Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (7): 499-509    DOI: 10.11901/1005.3093.2024.426
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials
SUN Shimao1, LIU Hongchang1,2(), LIU Hongwei1,2, WANG Jun1,2, SHANG Chenkai1
1.School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
2.Key Lab of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
Cite this article: 

SUN Shimao, LIU Hongchang, LIU Hongwei, WANG Jun, SHANG Chenkai. Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials. Chinese Journal of Materials Research, 2025, 39(7): 499-509.

Download:  HTML  PDF(20538KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Diatoms were prepared by adding extraction solution prepared from ionic rare earth ores to diatom culture media. The results indicate that high concentrations of rare earth extraction solution inhibited the growth of diatoms. An appropriate amount of rare earth extraction solution was added to cultivate diatoms, and diatom frustules modified with rare earth ions were used as rare earth ion doped diatom anode materials for lithium-ion batteries. The natural hollow porous structure of diatom frustules provided enough buffering space for the volumetric strain of SiO2. The doping of rare earth ions reduced the electrochemical impedance of the anode electrode of diatom frustules, significantly improving its long cycle and rate performance. The specific discharge capacity of the diatom frustule anode (DBS@C-REE-10) prepared with 10 mL/L rare earth extract after 150 cycles was 879 mAh·g-1, which was much greater than that of the diatom anode without rare earth ion modification.

Key words:  composite      lithium-ion battery      anode material      rare earth ions      diatoms     
Received:  16 October 2024     
ZTFLH:  TQ152  
Fund: National Key Research and Development Program of China(2022YFC2105300)
Corresponding Authors:  LIU Hongchang, Tel: 15874293360, E-mail: hchliu2050@csu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.426     OR     https://www.cjmr.org/EN/Y2025/V39/I7/499

Fig.1  Physiological and biochemical parameters of diatom growth process under the conditions of different concentration of REE extraction solution (a) pH curve, (b) chlorophyll a concentration, (c) carotenoid concentrations, (d) Si concentration
Fig.2  Characterization of composites with different rare earth content (a) XRD patterns, (b) TG curves
SampleH2OCSiO2
DBS@C6.9723.0569.98
DBS@C-REE-2.55.8621.9172..83
DBS@C-REE-53.8921.0175.10
DBS@C-REE-100.9319.2879.79
Table 1  Detailed composition of composites with different rare earth contents (mass fraction, %)
Fig.3  TEM and HRTEM images of composites with different rare earth contents (a) DBS@C, (b) DBS@C-REE-2.5, (c) DBS@C-REE-5, (d) DBS@C-REE-10
Fig.4  SEM images and EDS mapping of composites with different rare earth contents (a) DBS@C, (b) DBS@C-REE-2.5, (c) DBS@C-REE-5, (d) DBS@C-REE-10
Fig.5  Raman of composites with different rare earth contents (a) Raman spectra, (b) ID/IG integration intensity ratio
Fig.6  Electrochemical performance of diatom frustule-based anode with different concentration of REE extraction solution, CV curves of DBS@C (a), DBS@C-REE-2.5 (b), DBS@C-REE-5 (c), DBS@C-REE-10 (d), long cycle performance of DBS@C-REE (e), rate performance of DBS@C-REE (f)
Sample0.1 A·g-10.2 A·g-10.5 A·g-11 A·g-12 A·g-1
DBS@C211.9143.388.358.133.7
DBS@C-REE-2.5266.6242.5204.5114.5145.7
DBS@C-REE-5321.1290.2245.6139.8174.6
DBS@C-REE-10348.1316.9269.7162.1199.6
Table 2  Rate performance of diatom frustule-based anodes with different concentration of REE extraction solution (mAh·g-1)
Fig.7  EIS and pseudocapacitance test results of composites with different rare earth content (a) Nyquist curve, (b) Warburg factor, (c~f) pseudocapacitance contribution of DBS@C-REE-10
SampleσDLi+ / cm2·s-1
DBS@C466.22.17 × 10-15
DBS@C-REE-2.5377.83.30 × 10-15
DBS@C-REE-5349.13.86 × 10-15
DBS@C-REE-10331.64.28 × 10-15
Table 3  Warburg factor and DLi+ of DBS@C-REE electrode material
[1] Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy Environ. Sci., 2012, 5(7): 7854
[2] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? [J]. Science, 2014, 343(6176): 1210
[3] Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nat. Mater., 2008, 7(11): 845
doi: 10.1038/nmat2297 pmid: 18956000
[4] Jin Y, Zhu B, Lu Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery [J]. Adv. Energy Mater., 2017, 7(23): 1700715
[5] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries [J]. Chem. Mater., 2010, 22(3): 587
[6] Norberg A N, Wagner N P, Kaland H, et al. Silica from diatom frustules as anode material for Li-ion batteries [J]. RSC Adv., 2019, 9(70): 41228
doi: 10.1039/c9ra07271c
[7] Wang Z, Zhao J K, Liu S T, et al. Cultured diatoms suitable for the advanced anode of lithium ion batteries [J]. ACS Sustain. Chem. Eng., 2021, 9(2): 844
[8] Chen Y X, Liu H C, Xie W Q, et al. Diatom frustules decorated with Co nanoparticles for the advanced anode of Li-ion batteries [J]. Small, 2023, 19(30): 2300707
[9] Chen Y X, Liu H C, Shen Z, et al. Developing a novel lithium-ion battery anode material via thiol functionalization of diatom frustules plus Ag modification [J]. Iscience, 2024, 27(2): 108850
[10] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359
[11] Liu Z H, Yu Q, Zhao Y L, et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries [J]. Chem. Soc. Rev., 2019, 48(1): 285
doi: 10.1039/c8cs00441b pmid: 30457132
[12] Zhao H Y, Xia J L, Yin D D, et al. Rare earth incorporated electrode materials for advanced energy storage [J]. Coord. Chem. Rev., 2019, 390: 32
[13] Massari S, Ruberti M. Rare earth elements as critical raw materials: Focus on international markets and future strategies [J]. Resour. Policy, 2013, 38(1): 36
[14] Primo A, Marino T, Corma A, et al. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nano-particulate CeO2 obtained by a biopolymer templating method [J]. J. Am. Chem. Soc., 2012, 134(3): 1892
[15] Chen K F, Xue D F. Rare earth and transitional metal colloidal supercapacitors [J]. Sci. China Technol. Sci., 2015, 58(11): 1768
[16] Henao J, Martinez-Gomez L. Review: on rare-earth perovskite-type negative electrodes in nickel-hydride (Ni/H) secondary batteries [J]. Mater. Renew. Sustain., 2017, 6(2): 7
[17] Ghosh P, Mahanty S, Basu R N. Lanthanum-doped LiCoO2 cathode with high rate capability [J]. Electrochim. Acta, 2009, 54(5): 1654
[18] Luo S H, Tian Y, Li H, et al. Influence of lanthanum doping on performance of LiFePO4 cathode materials for lithium-ion batteries [J]. J. Rare Earths, 2010, 28(3): 439
[19] Zhang Q Y, Zhou J, Zeng G C, et al. Effect of lanthanum and yttrium doped LiFePO4 cathodes on electrochemical performance of lithium-ion battery [J]. J. Mater. Sci., 2023, 58(20): 8463
[20] Ning F H, Xu B, Shi J, et al. Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: a first-principles investigation [J]. J. Phys. Chem., 2016, 120C(33) : 18428
[21] Wang J W, Sun X L, Xu L L, et al. Organic-rare earth hybrid anode with superior cyclability for lithium ion battery [J]. Adv. Mater. Interfaces, 2020, 7(9): 1902168
[22] Zheng X Y, Yang C K, Chang X H, et al. Synergism of rare earth trihydrides and graphite in lithium storage: Evidence of hydrogen-enhanced lithiation [J]. Adv. Mater., 2018, 30(3): 1704353
[23] Yin D D, Zhao H Y, Li N, et al. Enhancing the rate capability of niobium oxide electrode through rare-earth doping engineering [J]. Batteries Supercaps, 2019, 2(11): 924
[24] Xia J L, Zhao H Y, Pang W K, et al. Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries [J]. Chem. Sci., 2018, 9(14): 3421
[25] Wang J W, Zhou B, Zhao H Y, et al. A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium-sulfur batteries [J]. Mater. Chem. Front., 2019, 3(7): 1317
[26] Wang J W, Sun X L, Zhao H Y, et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping [J]. J. Phys. Chem., 2019, 123C(37) : 22735
[27] Zhao H Y, Xu J, Yin D D, et al. Electrolytes for batteries with earth-abundant metal anodes [J]. Chem-A Eur. J., 2018, 24(69): 18220
[28] Rodea-Palomares I, Boltes K, Fernández-Piñas F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms [J]. Toxicolog. Sci., 2011, 119(1): 135
[29] Chen J J, Chen J X. Formation and thermal stability of dual glass phases in the h-BN/SiO2/Yb-Si-Al-O composites [J]. J. Eur. Ceram. Soc., 2020, 40(2): 456
[30] Sun Q, Zhang B, Fu Z W. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries [J]. Appl. Surf. Sci., 2008, 254(13): 3774
[31] Chang W S, Park C M, Kim J H, et al. Quartz (SiO2): A new energy storage anode material for Li-ion batteries [J]. Energy Environ. Sci., 2012, 5(5): 6895
[1] LIU Endian, BAI Yu, LI Jiawen, HAO Hai. Preparation of Bi-continuous Interpenetrating Porous Composite and Its Heat Treatment Enhancement[J]. 材料研究学报, 2025, 39(7): 481-488.
[2] CHEN Yuming, ZHU Xiaoyong, TAN Xiaoyue, LIU Jiaqin, WU Yucheng. Mechanical Properties of W-Y2O3 Composites as Candidate of the First Wall Material Faced Plasma[J]. 材料研究学报, 2025, 39(7): 510-520.
[3] MA Xue′e, HU Meifeng, SONG Xueli, CHANG Yue, ZHA Fei. Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites[J]. 材料研究学报, 2025, 39(6): 413-424.
[4] YANG Yanyan, LIU Yan, YANG Song, WANG Zitong, ZHU Feng, YU Zhongliang, HAO Xiaogang. Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates[J]. 材料研究学报, 2025, 39(6): 425-434.
[5] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[6] LIU Yanyun, WANG Na, ZHANG Zhihua, BAI Wen, LIU Yunjie, CHEN Yongqiang, LI Wanxi, LI Yu. MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors[J]. 材料研究学报, 2025, 39(5): 371-376.
[7] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[8] LI Qingpeng, LIU Jiaxing, AN Xiaoyun, LI Yongzhi, GAO Meng, SUN Hongtao, WANG Na. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. 材料研究学报, 2025, 39(4): 296-304.
[9] LI Ying, NIE Xuetong, QIAN Liguo, ZHU Yiren. Synthesis of Co3O4/ZnO@MG-C3Nx Catalysts and Their Visible Light Degradation of Methylene Blue Performance[J]. 材料研究学报, 2025, 39(4): 241-250.
[10] ZHANG Senhan, WANG Huan, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, ZHAO Yonghua. Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether[J]. 材料研究学报, 2025, 39(4): 251-258.
[11] SUN Bo, ZHANG Tianyu, ZHAO Qiangqiang, WANG Han, TONG Yu, ZENG You. Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films[J]. 材料研究学报, 2025, 39(4): 289-295.
[12] TANG Chen, ZHANG Yaozong, WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao. Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation[J]. 材料研究学报, 2025, 39(3): 233-240.
[13] YU Wenjing, LIU Chunzhong, ZHANG Hongliang, LU Tianni, WANG Dong, LI Na, HUANG Zhenwei. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy[J]. 材料研究学报, 2025, 39(2): 153-160.
[14] BAO Xiukun, SHI Guimei. Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites[J]. 材料研究学报, 2025, 39(2): 126-136.
[15] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
No Suggested Reading articles found!