Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (11): 861-869    DOI: 10.11901/1005.3093.2024.493
ARTICLES Current Issue | Archive | Adv Search |
Effect of Grain Size on Cryogenic Deformation Behavior of a Low-density High-Mn Steel FeMnAlC
YANG Fan1,2, ZHANG Yuqi1,2, PAN Jiawen1,2, CHEN Jun3()
1.CNOOC Key Laboratory of Liquefied Natural Gas and Low-Carbon Technology, Beijing 100028, China
2.CNOOC Gas & Power Group, Beijing 100028, China
3.State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
Cite this article: 

YANG Fan, ZHANG Yuqi, PAN Jiawen, CHEN Jun. Effect of Grain Size on Cryogenic Deformation Behavior of a Low-density High-Mn Steel FeMnAlC. Chinese Journal of Materials Research, 2025, 39(11): 861-869.

Download:  HTML  PDF(28733KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A low-density high-Mn test steel Fe-30Mn-9Al-0.96Mo-0.9C-0.49Si for cryogenic application was designed, and the effect of grain sizes on the microstructure and mechanical properties of the steel was investigated by tensile test at -196 oC, in terms of the microstructure evolution. The grain orientations of this steel are randomly distributed, and after tensile deformation at -196 oC the majority of the grain orientations tends to be <001>// the tensile direction or <111>// the tensile direction. Regardless of room temperature and -196 oC, the yield strength can be increased by approximately 160 MPa by refining its grain size from (16.5 ± 11.6) μm to (3.4 ± 2.2) μm. Accordingly, the steel after grain refinement presents yield strength, tensile strength and total elongation as 1304 MPa, 1664 MPa and 31.9% at -196 oC, respectively. Although the stacking fault energy can be reduced by lowering deformation temperature, the ordered structure still makes the plastic deformation of the steel to still be controlled by softening of slip planes. Thus, the plastic deformation mechanism of the steel is still governed by the planar slip. However, the dynamic slip band refinement and interaction between the slip bands can be affected by grain size.

Key words:  microstructure      defect and property of material      cryogenic deformation      ordered cluster      planar glide      strength and plasticity     
Received:  13 December 2024     
ZTFLH:  TG142.33  
Fund: Open Fund of CNOOC Key Laboratory of Liquefied Natural Gas and Low-Carbon Technology
Corresponding Authors:  CHEN Jun, Tel: (024)83681416, E-mail: chenjun@mail.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.493     OR     https://www.cjmr.org/EN/Y2025/V39/I11/861

Fig.1  Engineering stress-strain curves (a) and strain hardening rate curves (b) of the tested steels
Fig.2  Optical microstructure of the FG (a) and CG (b) tested steels
Fig.3  EBSD-IPF (a, c), EBSD-KAM (b, d) and IPF of δ-ferrite (e, f) maps of the FG (a, b, e) as well as CG (c, d, f) tested steels
Fig.4  Grain size distribution histograms of the FG (a) and CG (b) tested steels
Fig.5  EBSD-IPF (a, c), EBSD-KAM (b, d) and IPF of δ-ferrite (e, f) maps of the FG (a, b, e) as well as CG (c, d, f) tested steels after tensile deformation at -196 oC
Fig.6  Typical TEM images of the FG steel after tensile deformation at -196 oC. (a, b, d, f) Bright-field TEM images. (c, e) Selected area electron diffraction patterns obtained from the outlined regions A and B in Fig.6b and d, respectively. (g, j) High resolution TEM lattice fringe images of slip bands in Fig.6f. (h, k) Fast Fourier transform patterns of the Fig.6g and j. (i, l) One dimensional inverse fast Fourier transform lattice fringe images reconstructed using the (111¯) and (1¯1¯1) as well as (1¯11¯) and (11¯1) reflections
Fig.7  Typical TEM images of the FG steel after tensile deformation at -196 oC. (a, b, c, e, f) Bright-field TEM images. (d) Selected area electron diffraction patterns obtained from the outlined region A in Fig.7c
[1] Zambrano O A. A general perspective of Fe-Mn-Al-C steels [J]. J. Mater. Sci., 2018, 53(20): 14003
[2] Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
[3] Li F S, Liu Z P, Ding C C, et al. Strengthening and plastifying of a novel high-strength low-density austenitic steel [J]. Acta Metall. Sin., 2025, 61(6): 909
李夫顺, 刘志鹏, 丁灿灿 等. 一种新型高强奥氏体低密度钢的强塑性机理 [J]. 金属学报, 2025, 61(6): 909
[4] Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta Metall. Sin., 2022, 58(6): 771
任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11A1-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58(6): 771
[5] Chen X P, Li W J, Ren P, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metall. Sin., 2019, 55(8): 951
陈兴品, 李文佳, 任 平 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响 [J]. 金属学报, 2019, 55(8): 951
[6] Sun J, Li J H, Huang Z Y, et al. Microstructure evolution and dynamic recrystallization of a low density steel during isothermal compression [J]. Chin. J. Mater. Res., 2024, 38(10): 768
孙 建, 李景辉, 黄贞益 等. 一种低密度钢等温压缩时组织的演化和动态再结晶 [J]. 材料研究学报, 2024, 38(10): 768
[7] Cui Z Q, Zhang N F, Wang J, et al. High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel [J]. Chin. J. Mater. Res., 2022, 36(12): 907
崔志强, 张宁飞, 王 婕 等. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 [J]. 材料研究学报, 2022, 36(12): 907
[8] Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
[9] Wang F, Song M, Elkot M N, et al. Shearing brittle intermetallics enhances cryogenic strength and ductility of steels [J]. Science, 2024, 384: 1017
[10] Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77(9-10): 627
[11] Chen J, Lu S, Hou Z Y, et al. Atomic-scale understanding of twin intersection rotation and ε-martensite transformation in a high Mn twinning-induced plasticity steel [J]. Acta Mater., 2024, 271: 119832
[12] Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, 496A: 417
[13] Park K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature [J]. Scr. Mater., 2013, 68: 375
[14] Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
[15] Chen J, Liu N, Liu Z Y, et al. Alloying design as well as strength and toughness of high Mn steels for LNG tank building [J]. China Metall., 2023, 33(6): 73
陈 俊, 刘 宁, 刘振宇 等. LNG储罐用高锰钢合金化设计及强韧性 [J]. 中国冶金, 2023, 33(6): 73
[16] Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
[17] Li Y Q, Zhu L C, Liu Y, et al. On the strain hardening and texture evolution in high manganese steels: experiments and numerical investigation [J]. J. Mech. Phys. Solids, 2013, 61: 2588
[18] Chen X M, Lin Y C, Wu F. EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy [J]. J. Alloy. Compd., 2017, 724: 198
[19] Zhi H H, Zhang C, Antonov S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2020, 195: 371
[20] Lee J, Sohn S S, Hong S, et al. Effects of Mn addition on tensile and Charpy impact properties in austenitic Fe-Mn-C-Al-based steels for cryogenic applications [J]. Metall. Mater. Trans., 2014, 45A: 5419
[1] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[2] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[3] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[4] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[5] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[6] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[7] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[8] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[9] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[10] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[11] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[12] HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars[J]. 材料研究学报, 2025, 39(3): 217-224.
[13] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[14] JIANG Teng, LI Xing, LIU Hanqiang, CUI Shan, LIU Hongliang, LIU Jun, LUAN Yikun, JIANG Zhouhua. Effect of Isothermal Quenching Temperature on Microstructure and Mechanical Properties of Bainite/Martensite Multi-phase 42CrMo Steel[J]. 材料研究学报, 2025, 39(11): 837-844.
[15] CHEN Zihao, GAO Chong, PANG Jianchao, MA Heng, HE Kang, LI Xiaowu, LI Shouxin, ZHANG Zhefeng. Effect of Different Heterogeneous Microstructures on Tensile Properties of a High Strength Wind Power Steel Q500MD[J]. 材料研究学报, 2025, 39(11): 801-812.
No Suggested Reading articles found!