Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (11): 845-860    DOI: 10.11901/1005.3093.2025.104
ARTICLES Current Issue | Archive | Adv Search |
Effect of Preheating on Microstructure and Mechanical Properties of Butt Joint of 690 MPa Grade HSLA Steel
TANG Cunjiang1,2(), AN Tongbang2(), PENG Yun2, MA Chengyong2, LIN Chuncheng2,3, SHI Zhaoxia4, QIN Zhe1
1.Ansteel Beijing Research Institute Co. , Ltd. , Beijing 102200, China
2.Central Iron and Steel Research Institute Co. , Ltd. , Beijing 100081, China
3.College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
4.Gaona Areo Materials Co. , Ltd. , Beijing 100081, China
Cite this article: 

TANG Cunjiang, AN Tongbang, PENG Yun, MA Chengyong, LIN Chuncheng, SHI Zhaoxia, QIN Zhe. Effect of Preheating on Microstructure and Mechanical Properties of Butt Joint of 690 MPa Grade HSLA Steel. Chinese Journal of Materials Research, 2025, 39(11): 845-860.

Download:  HTML  PDF(40564KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to satisfy the need of practical engineering application, 690 MPa HSLA steel butt joints with 27 mm in thickness were welded by independently developed electrodes with 4.0 mm in diameter. The effects of non-preheating (-1 oC) and low preheating temperature (66 oC) welding on microstructures and mechanical properties of butt joints were studied and the mechanisms of strength-toughness were revealed. The results showed that preheating temperature had significant effects on microstructures and mechanical properties of butt joints. By comparison of non-preheating welding, the strength of weld metal slightly decreased while that of butt joints changed within a small range, the impact toughness at -50 oC (KV2) of weld center and fusion line changed obviously while that of the heat affected zone (HAZ) changed slightly. Cooling rate of the butt joint was lower in low preheating temperature welding compared with that without preheating, which promoted the formation of acicular ferrite with excellent plasticity and the degeneration of lath bainite in weld metal and fusion zone. Meanwhile, the M-A with larger size and higher quantity were formed. Comparing with the non-preheating welding, the higher impact toughness of weld metal for low-preheating temperature welding was correlated with the improvements of plasticity of acicular ferrite and interface bonding strength of M-A and acicular ferrite. Meanwhile, the lower impact toughness of the fusion line was correlated with the abnormal growth of acicular ferrite and dense distribution of M-A with larger size. Meanwhile, the improvement of M-A and acicular ferrite interface bonding strength was correlated with ultra-low carbon design of weld metal. Butt joint with excellent strength-toughness properties was obtained in the conditions of low-preheating temperature welding. Mean value of tensile strength of butt joint was 827 MPa, the average -50 oC impact toughness of weld center, fusion line, and HAZ (2 mm outside of fusion line) were 99, 98,and 260 J, respectively.

Key words:  metallic materials      690 MPa grade HSLA steel      butt joint      preheating      mechanisms of strength-toughness properties     
Received:  11 March 2025     
ZTFLH:  TG 442  
Corresponding Authors:  TANG Cunjiang, Tel: 15801547450, E-mail: tangcunjiang@163.comAN Tongbang, Tel: 18101309982, E-mail: anran30002000@sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.104     OR     https://www.cjmr.org/EN/Y2025/V39/I11/845

Type

Preheating temperature

/ oC

Environmental temperature

/ oC

Interpass temperature / oC

Current

/ A

Voltage

/ V

Welding speed

/ cm·min-1

Heat input

/ kJ·cm-1

Measured valueMean valueMeasured valueMean valueMeasured valueMean value
Non-preheating butt joint-1102-117108164-16724-2814-181614-1816
Low preheating temperature butt joint6619100-118110159-16423-2814-191513-1816
Deposited metal13-16101-118111-114165-16824-2813-211512-2117
Table 1  Welding parameters of butt joints and deposited metal
Fig.1  Locations of taking samples and mechanical properties measurement in butt joints (a) and observation region of impact sample (b) (WM—Weld metal, HAZ—Heat affected zone, BM—Base metel, A—Prior welding side, B—Posterior welding side)
Fig.2  Effects of preheating on mechanical properties of butt joints (a) tensile strength (Rm) of butt joints and weld metals, (b) total elongation (A) of weld metals, (c) engineering stress-strain curves of weld metals, (d) -50 ℃ impact energies (KV2) of WM center, fusion line (FL) and HAZ (2 mm outside fusion line)
Fig.3  Effects of preheating on hardness distribution and average hardness of butt joints (HV5) (a) location of hardness measurement, (b) surface hardness distributions, (c) center hardness distributions, (d) average hardness in different regions
Fig.4  OM images of non-preheating and low preheating temperature butt joints (dashed line indicate boundary of fusion zone, the same below) (a, b) weld metals, (c, d) fusion zones, (e, f) coarse grain regions in HAZ (FZ—Fusion zone, CG—Coarse grain region, GBF—Grain boundary ferrite, PCGB—Prior columnar grain boundary, AF—Acicular ferrite, B—Bainite, LB—Lath bainite, CB—Coalesced bainite)
Fig.5  OM images of M-A in non-preheating butt joint (a) weld metal, (b) fusion zone, (c) coarse grain region in HAZ
Fig.6  SEM images of non-preheating and low preheating temperature butt joints (dashed lines indicate fusion zone regions, the same below) (a, b) weld metals, (c, d) fusion zones (circle indicates abnormal growth of acicular ferrite), (e, f) coarse grain regions in HAZ
Fig.7  SEM images of M-A in non-preheating and low preheating temperature butt joints (a, b) weld metals, (c, d) fusion zones
Fig.8  SEM images of the center of impact fracture of non-preheating and low preheating temperature butt joints (regions 1, 3—dimple regions, regions 2, 4—quasi-cleavage fracture regions, regions 5, 6—fracture elements, regions 7, 8—comparison regions) (a, b) impact fractures of weld center (solid circles indicate observation regions, dashed lines indicate dimple and quasi-cleavage fracture regions), (c, d) weld metals in center (dashed lines indicate fracture elements), (e, f) fusion zones, (g, h) coarse grain regions in HAZ (solid rectangles indicate comparison of dimple size)
Fig.9  Observation region of impact fracture side (a) and SEM images of impact fracture side of weld metals for non-preheating (b, d) and low preheating temperature (c, e)
Fig.10  SEM images of micro-voids and main crack of impact fracture of weld metal in non-preheating welding (Fig.10c is backscattered electron (BSE) image, the others are secondary electron (SE) images, I—micro-voids appeared in AF, II—micro-voids appeared in B, III—micro-voids formed around AF and B interface, IV—micro-voids formed around M-A and AF interface, V—micro-voids formed at grain boundary, VI—micro-voids formed around inclusions, the same I~VI below) (a) SEM image of impact sample center (solid circles indicate observation regions), (b, c) observation region 1 in Fig.10a, (d) observation region 2 in Fig.10a (solid rectangle indicate deflection of main crack)
Fig.11  SEM images of micro-voids and main crack of impact fracture of weld metal in low preheating temperature welding (Fig.11c is BSE image, the others are SE images) (a) SEM image of impact sample center, (b, c) observation region in Fig.11a (solid rectangle indicate deflection of main crack), (d) main crack extension around M-A (as shown in dotted rectangle region)
[1] Li Z X, Su X H, Li H, et al. Research progress on microstructure and coalesced bainite of welded deposited metal to high-strength steel with tensile strength above 690 MPa [J]. Mater. China, 2019, 38(12): 1169
栗卓新, 苏小虎, 李 红 等. 690 MPa级以上高强钢焊接熔敷金属微观组织及其联合贝氏体的研究进展 [J]. 中国材料进展, 2019, 38(12): 1169
[2] Liu Z Y, Chen J, Tang S, et al. State of the art development of the manufacturing technologies of new generation war ship steels [J]. Mater. China, 2014, 33(9-10): 595
刘振宇, 陈 俊, 唐 帅 等. 新一代舰船用钢制备技术的现状与发展展望 [J]. 中国材料进展, 2014, 33(9-10): 595
[3] Peng Y, Song L, Zhao L, et al. Research status of weldability of advanced steel [J]. Acta Metall. Sin., 2020, 56(4): 601
彭 云, 宋 亮, 赵 琳 等. 先进钢铁材料焊接性研究进展 [J]. 金属学报, 2020, 56(4): 601
[4] Banerjee K, Chatterjee U K. Effect of microstructure on hydrogen embrittlement of weld-simulated HSLA-80 and HSLA-100 steels [J]. Metall. Mater. Trans., 2003, 34A: 1297
[5] Joyce J A, Link R E, Roe C, et al. Dynamic and static characterization of compact crack arrest tests of navy and nuclear steels [J]. Eng. Fract. Mech., 2010, 77(2): 337
[6] Wang X J. Approach to development of marine high strength structural steels weldable at low preheating temperature [J]. Dev. Appl. Mater., 1997, 12(4): 22
王献钧. 低预热焊接高强度舰船结构钢的发展途径 [J]. 材料开发与应用, 1997, 12(4): 22
[7] Dhua S K, Mukerjee D, Sarma D S. Weldability and microstructural aspects of shielded metal arc welded HSLA-100 steel plates [J]. ISIJ Int., 2002, 42(3): 290
[8] Lis A K, Lis J, Jeziorski L. Advanced ultra-low carbon bainitic steels with high toughness [J]. J. Mater. Process. Technol., 1997, 64(1-3): 255
[9] Wang R F, Zhao C Q, Jiang Y, et al. United States marine evolution and analysis of plate specifications [J]. Dev. Appl. Mater., 2012, 27(4): 80
王任甫, 赵彩琴, 蒋 颖 等. 美国舰船用钢板规范的演变与分析 [J]. 材料开发与应用, 2012, 27(4): 80
[10] Christein J P, Warren J L. Implementation of HSLA-100 steel in aircraft carrier construction-CVN 74 [J]. J. Ship Prod., 1995, 11(2): 97
[11] Park M J, Lee H W. Effect of preheating on weldability and corrosion resistance in 690 MPa grade quenched and tempered steel weld metals [J]. Korean J. Met. Mater., 2014, 52(12): 983
[12] Shin Y T, Jo Y J. Evaluation on reheat cracking of multi-pass weld metal of YP 690 QT steel [J]. Korean J. Met. Mater., 2018, 56(8): 580
[13] Elmozoge I K, Ateeg M M, Blackman S A. Effect of interpass temperature on mechanical properties of P-GMAW on X100 pipeline steel [J]. J. Eng. Res., 2006, (5): 16
[14] Peng Y, Wang A H, Xiao H J, et al. Effect of interpass temperature on microstructure and mechanical properties of weld metal of 690 MPa HSLA steel [J]. Mater. Sci. Forum, 2012, 706-709: 2246
[15] Zhang L, Li Y J, Wang J A, et al. Effect of acicular ferrite on cracking sensibility in the weld metal of Q690 + Q550 high strength steels [J]. ISIJ Int., 2011, 51(7): 1132
[16] Wei J S. Progress of non-preheating welding technique of high-strength steel for hull construction [J]. Dev. Appl. Mater., 2002, 17(1): 37
魏金山. 船用高强钢不预热焊接技术研究进展 [J]. 材料开发与应用, 2002, 17(1): 37
[17] Dixon B, Hakansson K. Effects of welding parameters on weld zone toughness and hardness in 690 MPa steel [J]. Weld. J., 1995, 74(4): S122
[18] Alexandrov B, Theis K, Streitenberger M, et al. Cold cracking in weldments of steel S 690 QT [J]. Weld. World, 2005, 49(5-6): 64
[19] Dong G B, Pan G X, Gu Y, et al. Non-preheating welding technology of 690 MPa high strength steel for coal mine machinery [J]. Baosteel Technol., 2024, (2): 30
董贵斌, 潘高祥, 顾 晔 等. 煤矿机械用690 MPa级高强钢不预热焊接技术 [J]. 宝钢技术, 2024, (2): 30
[20] Yang J, He H, Zhang Y W, et al. Development of 80 kg class high strength steel of non-preheat welding at low temperature [J]. Spec. Steel, 2021, 42(5): 36
杨 俊, 何 航, 张勇伟 等. 80 kg级低温不预热焊接高强钢的开发 [J]. 特殊钢, 2021, 42(5): 36
[21] Zhou W H. Non-preheated welding test of Q690qNH high strength and toughness atmospheric corrosion resisting steel for bridge [J]. Met. Mater. Metall. Eng., 2022, (2): 59
周文浩. 高强韧耐候桥梁钢Q690qNH的不预热焊接试验 [J]. 金属材料与冶金工程, 2022, (2): 59
[22] Han Z X, Duan Q C, Sun M C, et al. Study on crack resistance and microstructure analysis of Q690D quenched and tempered high strength steel [J]. Coal Mine Mach., 2019, 40(6): 91
韩振仙, 段青辰, 孙满春 等. Q690D调质高强钢抗裂性研究及显微组织分析 [J]. 煤矿机械, 2019, 40(6): 91
[23] Peng N Q, Fu G Q, Yang J H, et al. Microstructures and properties of heat affected zone for Q690q weathering bridge steel without preheating welding [J]. Iron Steel., 2022, 57(12): 152
彭宁琦, 付贵勤, 杨建华 等. Q690q耐候桥梁钢免预热焊接热影响区的组织性能 [J]. 钢铁, 2022, 57(12): 152
[24] Devaney R J. Process-structure-property characterisation of plasticity and fatigue damage in X100 welded joints for steel catenary risers [D]. Galway: NUI Galway, 2020
[25] Strötgen D, Gourment A, Hojda R. Welding performance of high strength X100Q/S690QLHHO seamless pipes without preheating for offshore structural applications [A]. Proceedings of the 31st International Ocean and Polar Engineering Conference [C]. Rhodes, Greece: ISOPE, 2021
[26] Li X D, Shang C J, Ma X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel [J]. Scr. Mater., 2017, 139: 67
[27] Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature [J]. Scr. Mater., 2009, 60(7): 493
[28] Li X D, Ma X P, Subramanian S V, et al. Structure-property-fracture mechanism correlation in heat-affected zone of X100 ferrite-bainite pipeline steel [J]. Metall. Mater. Trans., 2015, 2E: 1
[29] Jiang Q L, Li Y J, Wang J, et al. Effects of inclusions on formation of acicular ferrite and propagation of crack in high strength low alloy steel weld metal [J]. Mater. Sci. Technol., 2011, 27(10): 1565
[30] Zou Z D, Li Y J. Fine microstructure in fusion zone of HQ130 high strength steel [J]. Trans. China Weld. Inst., 1999, 20(3): 181
邹增大, 李亚江. HQ130高强钢焊接熔合区的精细组织特征 [J]. 焊接学报, 1999, 20(3): 181
[31] Li B, Zhao Y Z, Shi Y W, et al. Microstructure and fine structure in fusion zone of welded joint for high strength fine grain steel [J]. J. Iron Steel Res., 2003, 15(5): 35
李 擘, 赵玉珍, 史耀武 等. 高强度细晶粒碳素钢焊接接头熔合区附近的显微组织及精细结构 [J]. 钢铁研究学报, 2003, 15(5): 35
[32] Yao C W. The development of submerged arc welding material for X80 pipeline steel [D]. Xi'an: Xi'an University of Technology, 2006
姚成武. X80管线钢用埋弧焊接材料的研制 [D]. 西安: 西安理工大学, 2006
[33] Keehan E, Karlsson L, Andrén H O, et al. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 3-increased strength resulting from carbon additions [J]. Sci. Technol. Weld. Joining, 2006, 11(1):19
[34] Peng X N, Peng Y, Tian Z L, et al. Effect of Ni on the microstructure evolution of Cr-Ni-Mo series high strength weld metal [J]. Trans. China Weld. Inst., 2014, 35(9): 32
彭杏娜, 彭 云, 田志凌 等. Ni元素对Cr-Ni-Mo系高强焊缝组织演化的影响 [J]. 焊接学报, 2014, 35(9): 32
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!