Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (8): 569-575    DOI: 10.11901/1005.3093.2023.464
ARTICLES Current Issue | Archive | Adv Search |
Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes
HAO Ziheng1, ZHENG Liumenghan2, ZHANG Ni1, JIANG Entong2, WANG Guozheng2(), YANG Jikai2()
1.Science and Technology on Low-Light-Level Night Vision Laboratory, Xi'an 710065, China
2.School of Physics, Changchun University of Science and Technology, Changchun 130022, China
Cite this article: 

HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes. Chinese Journal of Materials Research, 2024, 38(8): 569-575.

Download:  HTML  PDF(6269KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The application of electrochromic devices (ECDs) in smart windows provides new solutions for energy conservation and environmental protection. WO3/Pt composite films for electrochromic cathodes were prepared through a combination of hydrothermal and electrodeposition methods. WO3/Pt composite films of different deposition times were characterized and their electrochromic properties were examined. Next, NiO thin films were prepared by electrodeposition as electrochromic anodes. WO3/Pt-NiO electrochromic devices were constructed with WO3/Pt composite films and NiO films as color changing cathodes and anodes, respectively. The WO3/Pt-NiO electrochromic device has a relatively fast response time (coloring/fading rate of 18.84/29.62 s) and a good optical modulation range (47% at 630 nm). Its designed ECD has the characteristics of large optical modulation, high coloring efficiency, and fast switching speed. These characteristics make WO3/Pt-NiO electrochromic devices a very promising candidate for smart windows in lighting control and energy-saving applications, and their use as color-changing smart windows has broad application prospects in fields such as architecture, aircraft, and automobiles.

Key words:  composites      color-change performance      electrochromism      WO3/Pt composite film     
Received:  16 September 2023     
ZTFLH:  TB333  
Fund: National Natural Science Foundation of China(51502023);Education Science and Technology Department project of Jilin Province(20200201077JC);Department Project of Jilin Province(JJKH20210800KJ);Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0751)
Corresponding Authors:  WANG Guozheng, Tel: 13704361080, E-mail: wguozheng@163.com;
YANG Jikai, Tel: 15144163608, E-mail: jikaiyang0625@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.464     OR     https://www.cjmr.org/EN/Y2024/V38/I8/569

Fig.1  Structure and schematic diagram of electrochromic device
Fig.2  XRD patterns of WO3/Pt-40 s and NiO film (a) and XPS full spectrum of NiO thin film (b)
Fig.3  SEM images of WO3 (a), WO3/Pt-40 s (b), WO3/Pt-80 s (c) and NiO (d) films
Fig.4  EDS energy spectrum of WO3/Pt-40 s (a) and WO3/Pt-80 s (b) of composite films sample
Fig.5  Cyclic voltammetric curve (a), injection and extraction charge change curve (b), transmission spectra (c), transmittance and response time curve (d), coloration efficiency (e) and Nyquist curve (f) of WO3、WO3/ Pt-40 s、WO3/Pt-80 s thin film samples

Qi or Qdi

mC·cm-2

Reversibility

%

tc or tb

s

Tb/Tc

%

T

%

CE

cm2·C-1

WO331.26/26.5785.0131.22/21.6371.72/24.6347.0914.26
WO3/Pt-40 s38.74/34.9290.1227.47/16.7270.53/15.5155.0226.12
WO3/Pt-80 s34.49/30.3587.9828.13/18.8471.36/18.7252.6417.33
Table 1  Electrochromic properties of WO3 and WO3/Pt thin films
Fig.6  Injection and extraction charge change curve (a), transmission spectra (b), transmittance and response time curve (c),and coloration efficiency (d) of WO3-NiO、WO3/Pt-NiO devices

Qi or Qdi

mC·cm-2

Reversibility

%

tc or tb

s

Tb/Tc

%

T

%

CE

cm2·C-1

WO3-NiO26.26/22.0583.9633.58/23.1765.72/22.6343.0912.21
WO3/Pt-NiO33.74/29.6987.9829.62/18.8464.53/17.5147.0021.33
Table 2  Electrochromic properties of WO3-NiO and WO3/Pt-NiO electrochromic devices
1 Ke Y J, Zhou C Z, Zhou Y, et al. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application [J]. Adv. Funct. Mater., 2018, 28(22): 1800113
2 Kolay A, Maity D, Flint H, et al. Self-switching photoelectrochromic device with low cost, plasmonic and conducting Ag nanowires decorated V2O5 and PbS quantum dots [J]. Sol. Energy Mater. Sol. Cells, 2022, 239: 111674
3 Cheng X F, Leng W H, Liu D P, et al. Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light [J]. Chemosphere, 2007, 68(10): 1976
pmid: 17482660
4 Wen R T, Arvizu M A, Morales-Luna M, et al. Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring [J]. Chem. Mater., 2016, 28(13): 4670
5 Chen X Q, Li P, Tong H, et al. Nanoarchitectonics of a Au nanoprism array on WO3 film for synergistic optoelectronic response [J]. Sci. Technol. Adv. Mater., 2011, 12(4): 044604
6 Hoseinzadeh S, Ghasemiasl R, Bahari A, et al. The injection of Ag nanoparticles on surface of WO3 thin film: enhanced electrochromic coloration efficiency and switching response [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 14855
7 Cui X Z, Guo L M, Cui F M, et al. Electrocatalytic activity and CO tolerance properties of mesostructured Pt/WO3 composite as an anode catalyst for PEMFCs [J]. J. Phys. Chem., 2009, 113C(10) : 4134
8 Qin Y Y, Lu J, Meng F Y, et al. Rationally constructing of a novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic junction towards efficient visible-light-driven photocatalytic hydrogen evolution and mechanism insight [J]. J. Colloid Interface Sci., 2021, 586: 576
9 Zhou Y J, Yang X, Yang J K, et al. Preparation and photoelectrocatalytic properties of WO3/Pt composite film [J]. Acta Photonica Sinica, 2021, 50(3): 0331002
周玉鉴, 杨 雪, 杨继凯 等. WO3/Pt复合薄膜的制备及其光电催化性能 [J]. 光子学报, 2021, 50(3): 0331002
10 Pang Y H, Chen Q, Shen X F, et al. Size-controlled Ag nanoparticle modified WO3 composite films for adjustment of electrochromic properties [J]. Thin Solid Films, 2010, 518(8): 1920
11 Rahmanzade K A, Nikfarjam A, Ameri M, et al. Improving electrochromic properties of WO3 thin film with gold nanoparticle additive [J]. Int. J. Eng., 2015, 28(8): 1169
12 Zhang W D, Jiang L C, Ye J S. Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes [J]. J. Phys. Chem., 2009, 113C(36) : 16247
13 Naseri N, Azimirad R, Akhavan O, et al. Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals [J]. Thin Solid Films, 2010, 518(8): 2250
14 Kadam P M, Tarwal N L, Shinde P S, et al. Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films [J]. J. Alloys Compd., 2011, 509(5): 1729
15 Kharade R R, Mali S S, Patil S P, et al. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films [J]. Electrochim. Acta, 2013, 102: 358
16 Fan G F, Zhu H W, Wang K L, et al. Graphene/silicon nanowire Schottky junction for enhanced light harvesting [J]. ACS Appl. Mater. Interfaces, 2011, 3(3): 721
17 Aamir L. Novel p-type Ag-WO3 nano-composite for low-cost electronics, photocatalysis, and sensing: synthesis, characterization, and application [J]. J. Alloys Compd., 2021, 864: 158108
18 Zhou K L, Wang H, Zhang S J, et al. Electrochromic modulation of near-infrared light by WO3 films deposited on silver nanowire substrates [J]. J. Mater. Sci., 2017, 52: 12783
[1] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[2] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[3] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[8] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] XU Wenyu, SUN Jiawen, ZHU Yaofeng. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. 材料研究学报, 2023, 37(12): 952-960.
[10] DONG Zhexuan, CHEN Ping, LIU Xingda. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures[J]. 材料研究学报, 2023, 37(12): 900-906.
[11] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[12] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[13] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[14] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[15] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
No Suggested Reading articles found!