Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (2): 92-104    DOI: 10.11901/1005.3093.2023.229
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics
WENG Xin1, LI Qiqi1, YANG Guifang2, LV Yuancai1, LIU Yifan1, LIU Minghua1,2()
1.College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
2.College of Environmental and Biological Engineering, Putian University, Putian 351100, China
Cite this article: 

WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics. Chinese Journal of Materials Research, 2024, 38(2): 92-104.

Download:  HTML  PDF(10463KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The absorbent of Fe-loaded cellulose/bayberry tannin (Fe-CBT) was prepared via impregnation and in-situ reduction process, with cellulose/tannin composite aerogel (CBT) as the carrier, which then was characterized by means of scanning electron microscopy, Fourier infrared spectroscopy and X-ray energy dispersive spectroscopy. Afterwards, the adsorption characteristic of the Fe-CBT was comparatively assessed for three typical fluoroquinolones (FQs) antibiotics, i.e., norfloxacin (NOR), lomefloxacin hydrochloride (LOM) and levofloxacin hydrochloride (LVX). The results show that the coexistence of cations Na+, K+, Mg2+ and Ca2+ all interferes significantly with the adsorption process. Moreover, the adsorption process is an exothermic reaction that proceeds spontaneously, mainly as single-molecule layer adsorption, of which chemisorption is the main rate-limiting step. The quasi-secondary and Langmuir models are demonstrated to fit this adsorption behavior, and the maximum theoretical adsorption capacity of 99.07, 74.17 and 40.14 mg/g can be achieved for NOR, LOM and LVX at 298 K, respectively. Both NaOH and NaCl show superior elution effect on Fe-CBT, namely, after re-generation for four times with NaOH and NaCl solutions, the adsorption capacity of Fe-CBT on NOR could even be maintained > 70%. In addition, it is found that the removal of FQs by Fe-CBT is caused by the synergy between electrostatic gravitation, surface complexation, hydrogen bonding and π-π stacking.

Key words:  organic polymer materials      Fe-loaded      cellulose composite aerogel      fluoroquinolones antibiotics      tannin      adsorption     
Received:  17 April 2023     
ZTFLH:  TQ424  
Fund: National Natural Science Fundation of China(22278082)
Corresponding Authors:  LIU Minghua, Tel: 13305022089, E-mail: mhliu2000@fzu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.229     OR     https://www.cjmr.org/EN/Y2024/V38/I2/92

Fig.1  SEM images of CBT and Fe-CBT (a, b) CBT; (c, d) Fe-CBT
Fig.2  SEM images of Fe-CBT (a), EDS analytical results of element distribution of Fe-CBT (b) and EDS patterns of Fe-CBT (c)
Fig.3  XRD patterns of CP, CBT and Fe-CBT
Fig.4  FT-IR spectra of BT, CP, CBT and Fe-CBT
Fig.5  N2 adsorption-desorption isotherms of CBT and Fe-CBT
Fig.6  Thermogravimetric curves of CP, BT, CBT and Fe-CBT (a) TG curves; (b) DTG curves
Fig.7  XPS high resolution scan of adsorbents before and after sodium borohydride reduction (a) Fe-CBT before reduction and (b) after reduction of Fe2p
Fig.8  Effect of solution pH on the adsorption performance of NOR, LOM and LVX on Fe-CBT
Fig.9  Molecular formula of NOR and zeta potentials of Fe-CBT
Fig.10  Molecular structure of NOR
Fig.11  Adsorption isotherm model fittings of FQs by Fe-CBT at different temperatures (a) NOR, (b) LOM, (c) LVX
PollutantT / KLangmuirFreundlichTempkin
qm / mg·g-1KLR2nKfR2R2
NOR298.1599.070.10140.98962.2616.600.96430.9636
308.1593.710.07450.99272.0712.300.96830.9653
318.1588.360.05170.99771.878.450.98150.9807
328.1575.670.04310.99591.836.380.98770.9791
LOM298.1574.170.11790.99112.5715.020.96360.9870
308.1569.360.09950.99172.4412.480.97810.9917
318.1565.950.07190.99602.229.320.96700.9901
328.1560.700.05880.99292.107.310.95650.9881
LVX298.1540.140.15740.99433.0910.580.95060.9974
308.1539.490.10430.99862.677.960.95720.9990
318.1536.200.08910.99832.556.560.95220.9990
328.1531.830.08100.99642.495.430.95080.9988
Table 1  Fitting parameters of isotherm adsorption models of Fe-CBT for NOR, LOM and LVX at different temperatures
AdsorbentPollutantqm / mg·g-1Ref.
NCZMLVX35.98[33]
KaoliniteLOM2.68[34]
HABNOR9.97[35]
NR-CGFNOR88.43[36]
MIL-101(Cr)-NH2NOR92.50[37]
Fe-CBTNOR99.07This study
LOM74.17
LVX40.14
Table 2  Comparison of adsorption capacity of other adsorbents for FQs
PollutantT/KResultΔG / kJ·mol-1ΔS / J·(mol·K)-1ΔH / kJ·mol-1
NOR298.15

y = 3374x - 9.483

R2 = 0.9954

-4.549-78.82-28.05
308.15-3.761
318.15-2.973
328.15-2.185
LOM298.15

y = 2520x - 6.936

R2 = 0.9951

-3.749-57.70-20.95
308.15-3.172
318.15-2.595
328.15-2.018
LVX298.15

y = 2148x - 6.319

R2 = 0.9953

-2.190-52.54-17.86
308.15-1.664
318.15-1.139
328.15-0.614
Table 3  Thermodynamic parameters for adsorption of NOR, LOM and LVX at different temperatures
Fig.12  Fitting results of Van't Hoff equation (a) NOR; (b) LOM; (c) LVX
Fig.13  Adsorption kinetics results of NOR, LOM and LVX on Fe-CBT (a) adsorption kinetics data; (b) pseudo-first-order kinetic linear fittings; (c) pseudo-second-order kinetic linear fittings; (d) intra-particle diffusion model fittings
PollutantPseudo-first-order kinetic modelPseudo-second-order kinetic model
K1qeR2K1qeR2
NOR1.123 × 10-216.870.86531.023 × 10-342.110.9961
LOM1.114 × 10-219.740.89131.132 × 10-339.280.9992
LVX1.209 × 10-212.900.91741.970 × 10-326.390.9995
Table 4  Adsorption kinetics parameters of NOR, LOM and LVX adsorption over Fe-CBT
Fig.14  Effect of inorganic cation on the adsorption of NOR by Fe-CBT
Fig.15  Cyclic regeneration results of NOR adsorption by Fe-CBT
Fig.16  FTIR spectra of Fe-CBT before and after NOR, LOM, and LVX adsorption
Fig.17  XPS spectra of Fe-CBT before and after NOR adsorption
Fig.18  High-resolution XPS spectra of Fe-CBT. C1s of (a) before and (b) after adsorption; O1s of (c) before and (d) after adsorption; Fe2p (e) before and (f) after adsorption
1 Anonymous. Quinolone antibiotics [J]. Am. Pharm., 1992, NS 32(8): 27
2 Hooper D C, Jacoby G A. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance [J]. Cold Spring Harb. Perspect. Med., 2016, 6(9): a025320
doi: 10.1101/cshperspect.a025320
3 Mathur P, Sanyal D, Callahan D L, et al. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environment and human health [J]. Environ. Pollut., 2021, 291: 118233
doi: 10.1016/j.envpol.2021.118233
4 Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating biopolymer and sustainable raw material [J]. Angew. Chem. Int. Ed., 2005, 44(22): 3358
doi: 10.1002/anie.v44:22
5 Li J W, Bendi R, Malla R, et al. Cellulose nanofibers-based green nanocomposites for water environmental sustainability: A review [J]. Emergent Mater., 2021, 4(5): 1259
doi: 10.1007/s42247-021-00300-8
6 Sayyed A J, Pinjari D V, Sonawane S H, et al. Cellulose-based nanomaterials for water and wastewater treatments: A review [J]. J. Environ. Chem. Eng., 2021, 9(6): 106626
doi: 10.1016/j.jece.2021.106626
7 Yao Y J, Yu M J, Yin H Y, et al. Tannic acid-Fe coordination derived Fe/N-doped carbon hybrids for catalytic oxidation processes [J]. Appl. Surf. Sci., 2019, 489: 44
doi: 10.1016/j.apsusc.2019.05.275
8 Ma W J, Ding Y C, Zhang M J, et al. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation [J]. J. Hazard. Mater., 2020, 384: 121476
doi: 10.1016/j.jhazmat.2019.121476
9 Setyono D, Valiyaveettil S. Chemically modified sawdust as renewable adsorbent for arsenic removal from water [J]. ACS Sustainable Chem. Eng., 2014, 2(12): 2722
doi: 10.1021/sc500458x
10 Shen Y, Chen B L. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water [J]. Environ. Sci. Technol., 2015, 49(12): 7364
doi: 10.1021/acs.est.5b01057
11 Luo H, Zhang S X, Li X Y, et al. Tannic acid modified Fe3O4 core-shell nanoparticles for adsorption of Pb2+ and Hg2+ [J]. J. Taiwan Inst. Chem. Eng., 2017, 72: 163
doi: 10.1016/j.jtice.2017.01.026
12 Liao H. Biomass-supported monodisperse n-Fe0@M0 preparation and basic research on application of uranium adsorption and reduction [D]. Mianyang: Southwest University of Science and Technology, 2021
廖 卉. 生物质负载型单分散性n-Fe0@M0制备及其铀吸附还原应用基础研究 [D]. 绵阳: 西南科技大学, 2021
13 Chen Q, Zheng J W, Zheng L C, et al. Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations [J]. Chem. Eng. J., 2018, 350: 1000
doi: 10.1016/j.cej.2018.06.054
14 Missio A L, Mattos B D, Ferreira D D F, et al. Nanocellulose-tannin films: From trees to sustainable active packaging [J]. J. Cleaner Prod., 2018, 184: 143
doi: 10.1016/j.jclepro.2018.02.205
15 Su J J. Study on the preparation and adsorption performance of polyethyleneimine modified cellulose adsorbent [D]. Nanning: Guangxi University, 2017
苏晶晶. 聚乙烯亚胺改性纤维素重金属吸附剂的制备及其吸附性能研究 [D]. 南宁: 广西大学, 2017
16 Peng X. Preparation of cellulose adsorbent materials and study on their adsorption performance towards hexavalent chromium and p-Arsanilic acid [D]. Guangzhou: South China University of Technology, 2020
彭 雄. 纤维素吸附材料的制备及其对六价铬和对氨基苯胂酸吸附性能研究 [D]. 广州: 华南理工大学, 2020
17 Zhao W J. Selective catalytic hydrogenation and depolymerization of lignin with Ni/MgO [D]. Guangzhou: South China University of Technology, 2018
赵伟杰. Ni/MgO催化木质素选择性加氢解聚 [D]. 广州: 华南理工大学, 2018
18 Campa M C, Doyle A M, Fierro G, et al. Simultaneous abatement of NO and N2O with CH4 over modified Al2O3 supported Pt, Pd, Rh [J]. Catal. Today, 2022, 384-386: 76
doi: 10.1016/j.cattod.2021.06.020
19 Xu Q H, Wang Y L, Jin L Q, et al. Adsorption of Cu(II), Pb(II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose [J]. J. Hazard. Mater., 2017, 339: 91
doi: 10.1016/j.jhazmat.2017.06.005
20 Taksitta K, Sujarit P, Ratanawimarnwong N, et al. Development of tannin-immobilized cellulose fiber extracted from coconut husk and the application as a biosorbent to remove heavy metal ions [J]. Environ. Nanotechnol., Monit. Manage., 2020, 14: 100389
21 Zhou P. Research on preparation and adsorption property of tannin-immobilized cellulose resin [D]. Jishou: Jishou University, 2019
周 鹏. 纤维素固化单宁树脂的制备及吸附性能研究 [D]. 吉首: 吉首大学, 2019
22 Pei Y, Xu G Q, Wu X, et al. Removing Pb(II) ions from aqueous solution by a promising absorbent of tannin-immobilized cellulose microspheres [J]. Polymers, 2019, 11(3): 548
doi: 10.3390/polym11030548
23 Özacar M, Soykan C, Şengi̇l İ A. Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins [J]. J. Appl. Polym. Sci., 2006, 102(1): 786
doi: 10.1002/app.v102:1
24 Ju L X, Li F, Ning X, et al. Durable antibacterial finishing on kapok fibrous nonwovens with Polydopamine/PEI assisted immobilization of silver [J]. Fibers Polym., 2021, 22(9): 2440
doi: 10.1007/s12221-021-1225-1
25 Conde-González J E, Lorenzo-Luis P, Salvadó V, et al. A new cotton functionalized with iron(III) trimer-like metal framework as an effective strategy for the adsorption of triarylmethane dye: An insight into the dye adsorption processes [J]. Heliyon, 2021, 7(12): e08524
doi: 10.1016/j.heliyon.2021.e08524
26 Peng S, Fan L L, Wei C Z, et al. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes [J]. Carbohydr. Polym., 2017, 157: 344
doi: 10.1016/j.carbpol.2016.10.004
27 Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci., 2008, 254(8): 2441
doi: 10.1016/j.apsusc.2007.09.063
28 Ozawa H, Haga M A. Soft nano-wrapping on graphene oxide by using metal-organic network films composed of tannic acid and Fe ions [J]. Phys. Chem. Chem. Phys., 2015, 17(14): 8609
doi: 10.1039/c5cp00264h pmid: 25743482
29 Gu C, Karthikeyan K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides [J]. Environ. Sci. Technol., 2005, 39(23): 9166
doi: 10.1021/es051109f
30 Tolls J. Sorption of veterinary pharmaceuticals in soils: A review [J]. Environ. Sci. Technol., 2001, 35(17): 3397
doi: 10.1021/es0003021
31 Zhang H C, Huang C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite [J]. Chemosphere, 2007, 66(8): 1502
pmid: 17083963
32 Ashiq A, Vithanage M, Sarkar B, et al. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review [J]. Environ. Res., 2021, 197: 111091
doi: 10.1016/j.envres.2021.111091
33 Chen Z, Ma W, Lu G, et al. Adsorption of levofloxacin onto mechanochemistry treated zeolite: Modeling and site energy distribution analysis [J]. Sep. Purif. Technol., 2019, 222: 30
doi: 10.1016/j.seppur.2019.04.010
34 Bian X Y, Bi E P. Sorption characteristics of different forms of lomefloxacin on kaolinite [J]. Earth Sci. Front., 2019, 26(4): 279
doi: 10.13745/j.esf.sf.2019.5.31
卞馨怡, 毕二平. 不同形态洛美沙星在高岭土上的吸附特性 [J]. 地学前缘, 2019, 26(4): 279
doi: 10.13745/j.esf.sf.2019.5.31
35 Zhao J, Liang G W, Zhang X L, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water [J]. Sci. Total Environ., 2019, 688: 1205
doi: 10.1016/j.scitotenv.2019.06.287
36 Yi L S, Liang G W, Xiao W L, et al. Rapid nitrogen-rich modification of Calotropis gigantea fiber for highly efficient removal of fluoroquinolone antibiotics [J]. J. Mol. Liq., 2018, 256: 408
doi: 10.1016/j.molliq.2018.02.060
37 Guo X Y, Kang C F, Huang H L, et al. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water [J]. Microporous Mesoporous Mater., 2019, 286: 84
doi: 10.1016/j.micromeso.2019.05.025
38 Ahmed M J. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review [J]. Environ. Toxicol. Pharmacol., 2017, 50: 1
doi: 10.1016/j.etap.2017.01.004
39 Azzam A M, El-Wakeel S T, Mostafa B B, et al. Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles [J]. J. Environ. Chem. Eng., 2016, 4(2): 2196
doi: 10.1016/j.jece.2016.03.048
40 Luo C, Tian Z, Yang B, et al. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal [J]. Chem. Eng. J., 2013, 234: 256
doi: 10.1016/j.cej.2013.08.084
41 Wan Y B, Liu X, Liu P L, et al. Optimization adsorption of norfloxacin onto polydopamine microspheres from aqueous solution: Kinetic, equilibrium and adsorption mechanism studies [J]. Sci. Total Environ., 2018, 639: 428
doi: 10.1016/j.scitotenv.2018.05.171
42 Wang J P, Zhang M, Zhou R J, et al. Adsorption characteristics and mechanism of norfloxacin in water by γ-Fe2O3@BC [J]. Water Sci. Technol., 2020, 82(2): 242
43 Liu Q J, Ma P L, Liu P L, et al. Green synthesis of stable Fe, Cu oxide nanocomposites from loquat leaf extracts for removal of Norfloxacin and Ciprofloxacin [J]. Water Sci. Technol., 2020, 81(4): 694
doi: 10.2166/wst.2020.152
44 Ma Y F, Li P, Yang L, et al. Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal [J]. Ecotoxicol. Environ. Saf., 2020, 196: 110550
doi: 10.1016/j.ecoenv.2020.110550
45 Jiang W, Cui W R, Liang R P, et al. Difunctional covalent organic framework hybrid material for synergistic adsorption and selective removal of fluoroquinolone antibiotics [J]. J. Hazard. Mater., 2021, 413: 125302
doi: 10.1016/j.jhazmat.2021.125302
46 Tan H L, Zhang L, Ma C J, et al. Terbium-based coordination polymer nanoparticles for detection of ciprofloxacin in tablets and biological fluids [J]. ACS Appl. Mater. Interfaces, 2013, 5(22): 11791
doi: 10.1021/am403442q
47 Li Y, Taggart M A, McKenzie C, et al. Utilizing low-cost natural waste for the removal of pharmaceuticals from water: Mechanisms, isotherms and kinetics at low concentrations [J]. J. Cleaner Prod., 2019, 227: 88
doi: 10.1016/j.jclepro.2019.04.081
48 Che G Q, Zhang Q Y, Lin L, et al. Unraveling influence of metal species on norfloxacin removal by mesoporous metallic silicon adsorbent [J]. Environ. Sci. Pollut. Res., 2020, 27(28): 35638
doi: 10.1007/s11356-020-09829-3
[1] LI Yuxuan, DU Yonggang, SU Junming, WANG Zhi, ZHU Yongfei. Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation[J]. 材料研究学报, 2024, 38(1): 71-80.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[5] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[6] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[7] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[8] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[9] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[10] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[11] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[12] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[13] YU Moxin, KUAI Le, WANG Liang, ZHANG Chen, WANG Xiaoting, CHEN Qihou. Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74[J]. 材料研究学报, 2021, 35(9): 667-674.
[14] QUE Aizhen, ZHU Taoyu, ZHENG Yuying. Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue[J]. 材料研究学报, 2021, 35(7): 517-525.
[15] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
No Suggested Reading articles found!