|
|
Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites |
XIE Donghang1,3, PAN Ran2, ZHU Shize3, WANG Dong3( ), LIU Zhenyu3, ZAN Yuning3, XIAO Bolv3, MA Zongyi3 |
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China 2.AVIC Manufacturing Technology Institute, Beijing 100024, China 3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites. Chinese Journal of Materials Research, 2023, 37(10): 731-738.
|
Abstract Composites 15%B4C/Al-6.5Zn-2.8Mg-1.7Cu with various size (7 μm, 14 μm, 20 μm) of reinforced paricales B4C were prepared by powder metallurgy vacuum hot pressing method. B4C particles can be uniformly distributed in the three composite materials, and the B4C-Al interface reaction is relatively slight, and no obvious interfacial reaction products are observed. In the matrix of the three composites, the size of the precipitates is basically the same, all of which are about 5.5 nm. When the B4C particle size is 7 μm, the composite has the best performance, i.e., yield strength of 648 MPa, tensile strength of 713 MPa and elongation of 3.3%. With the increase of particle size, the strength and elongation of the composites decreased. The strengthening mechanism and fracture mechanism of the three composites were analyzed, and the results showed that the composite reinforced with smaller B4C particles had higher strength. The particles are not easy to break during deformation, so they have better plasticity.
|
Received: 31 October 2022
|
|
Fund: National Key Research and Development Program of China(2021YFA1600704);Beijing Municipal Natural Science Foundation(3214053);Liaoning Province Xingliao Talent Program Project(XLYC2007009) |
Corresponding Authors:
WANG Dong, Tel: (024)23971752, E-mail: dongwang@imr.ac.cn
|
1 |
Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Materials China., 2010, 29 (4): 1
|
|
张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
|
2 |
Czerwinski F. Current trends in automotive light-weighting strategies and materials [J]. Materials., 2021, 14(21): 6631
doi: 10.3390/ma14216631
|
3 |
Stoyakina E. A. Mechanical properties of aluminium-matrix composite materilas reinforced with SiC Particles, depending on the matrix alloy [C]. Trudy VIAM., 2018
|
4 |
Jin P, Liu Y, Li S, et al. Aerospace applications of particulate reinforced aluminum matrix composites [J]. Mater Reports., 2009, 23(11): 24
|
|
金 鹏, 刘 越, 李 曙, 肖伯律. 颗粒增强铝基复合材料在航空航天领域的应用 [J]. 材料导报, 2009, 23(11): 24
|
5 |
Zeng M X, Liu Z M, Li W T, et al. Property of Al-Zn-Mg-(Cu) alloy after linear heating aging treatment [J]. Chin.J.Mater. Res., 2015, 29(3): 235
|
|
曾苗霞, 林振铭, 李文涛, 等. Al-Zn-Mg-(Cu)合金线性升温时效后的性能 [J]. 材料研究学报, 2015, 29(3): 235
doi: 10.11901/1005.3093.2014.494
|
6 |
Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys:A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
doi: 10.1016/j.jallcom.2018.11.286
|
7 |
Ravi Kumar N V, Dwarakadasa E S. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCP composites [J]. Composites: Part A., 2000, 31: 1139
doi: 10.1016/S1359-835X(00)00062-2
|
8 |
Kulkarni M D, Robi P S, Prasad P C, et al. Fracture toughness and fractography of cast and extruded 7075 Al-SiC particulate composites [J]. Scripta Mater., 1994, 31(3):237
doi: 10.1016/0956-716X(94)90276-3
|
9 |
Manoharan M, Lewandowski J J. Crack initiation and growth toughness of an aluminum metal-matrix composite [J]. Acta Metall Mater., 1990, 38(3): 489
doi: 10.1016/0956-7151(90)90155-A
|
10 |
Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu Composites[J]. Mater.Charact., 2019, 158: 109966
|
11 |
Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites [J]. Acta Metall Sin, 2019, 55(10): 1319
doi: 10.11900/0412.1961.2018.00523
|
|
马国楠, 王 东, 刘振宇, 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响 [J]. 金属学报, 2019, 55(10): 1319
doi: 10.11900/0412.1961.2018.00523
|
12 |
Canakci A, Arslan F, Yasar I. Pre-treatment process of B4C particles to improve incorporation into molten AA2014 alloy [J]. J. Mater. Sci., 2007, 42: 9536
doi: 10.1007/s10853-007-1896-z
|
13 |
Esther I, Dinaharan I, Murugan N. Microstructure and sliding wear characterization of submicron and nanometric boron carbide particulate reinforced AA2124 aluminum matrix composites prepared by stir casting [J]. Mater. Res. Express., 2019(6): 0865i3
|
14 |
Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Materials Chemistry and Physics, 2015, 154: 107
doi: 10.1016/j.matchemphys.2015.01.052
|
15 |
Gao M Q, Chen Z N, Kang H J, et al. Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures [J]. J. Mater. Sci. Technol., 2019, 35(8): 1523
doi: 10.1016/j.jmst.2019.03.040
|
16 |
Sharma A, Tirumuruhan B, G Set al Muthuvel. Optimization of process parameters of boron carbide-reinforced Al-Zn-Mg-Cu matrix composite produced by pressure assisted sintering [J]. J. Mater. Eng. Perform., 2022, 31(1): 328
doi: 10.1007/s11665-021-06210-4
|
17 |
Sharma A, Sai S K V, Mrinal D, et al. Ballistic performance of functionally graded boroncarbide reinforced Al-Zn-Mg-Cu alloy [J]. J. Mater. Sci. Technol., 2022, 18: 4042
|
18 |
Wu C D, Fang P, Luo G Q. Effect of plasma activated sintering parameters on microstructure and mechanical properties of Al-7075/B4C composites [J]. J. Alloys Compd., 2014, 615: 276
doi: 10.1016/j.jallcom.2014.06.110
|
19 |
Ye T K, Xu Y X, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite [J]. Mat. Sci. Eng. A., 2019, 753: 146
doi: 10.1016/j.msea.2019.03.037
|
20 |
Viala J C, Bouix J. Chemical reactivity of aluminium with boron carbide [J]. J. Mater. Sci., 1997, 32: 4559
doi: 10.1023/A:1018625402103
|
21 |
Pyzik A J, Beaman D R. Al-B-C phase development and effects on mechanical properties of B4C/Al derived composites [J]. J Am. Ceram. Soc., 1995, 78(2): 305
doi: 10.1111/jace.1995.78.issue-2
|
22 |
Li Y Z, Wang Q Z, Wang W G, et al. Effect of interfacial reaction on age-hardening ability of B4C/6061Al composites [J]. Mat. Sci. Eng. A., 2015, 620: 445
doi: 10.1016/j.msea.2014.10.025
|
23 |
Li Y, Deng Y L, Fan S T, et al. An in-situ study on the dissolution of intermetallic compounds in the Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 829: 154612
doi: 10.1016/j.jallcom.2020.154612
|
24 |
Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy(7050) [J]. Acta Mater., 2004, 52(15): 4503
doi: 10.1016/j.actamat.2004.06.025
|
25 |
Curle U A, Cornish L A, Govender G. Predicting yield strengths of Al-Zn-Mg-Cu-(Zr) aluminum alloys based on alloy composition or hardness [J]. Mater.Des., 2016, 99: 211
|
26 |
Li G, Wang F F, Zheng R, et al. Microstructural evolution and strengthening mechanism of Al alloy matrix composites by applied high pulsed electromagnetic field [J]. Chin. J. Mater. Res., 2016, 30(10): 745
doi: 10.11901/1005.3093.2015.173
|
|
李桂荣, 王芳芳, 郑瑞, 等.脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制 [J]. 材料研究学报, 2016, 30(10): 745
doi: 10.11901/1005.3093.2015.173
|
27 |
Zou Y, Wu X D, Tang S B, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios [J]. J. Mater. Sci. Technol., 2021, 85: 106
doi: 10.1016/j.jmst.2020.12.045
|
28 |
Won Sung-Jae, Soa Hyeongsub, Kang Leeseung, et al. Development of a high-strength Al-Zn-Mg-Cu-based alloy via multi-strengthening mechanisms [J]. Scr. Mater, 2021, 205: 114216
doi: 10.1016/j.scriptamat.2021.114216
|
29 |
Preet M, Singh, John J. Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy [J]. Metallurgical Transactions A., 1993, 24: 2531
doi: 10.1007/BF02646532
|
30 |
Suh Y S, Joshi S P, Ramesh K T. An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites [J]. Acta Mater., 2009, 57: 5848
doi: 10.1016/j.actamat.2009.08.010
|
31 |
Xiang Z B, Nie J H, Wei S H, et al. Effects of particle-matrix matching on strengthening mechanism of particle reinforced Al matrix composites [J]. Chin. J. Mater. Res., 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
|
|
向兆兵, 聂俊辉, 魏少华, 等. 增强颗粒与基体适配性对颗粒增强铝基 复合材料强化机理的影响 [J]. 材料研究学报, 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
|
32 |
Kok M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites [J]. J.Mater.Process Technol., 2005, 161: 381
|
33 |
Yang Z Y, Fan J Z, Liu Y Q, et al. Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites [J]. Materials., 2021, 14: 675
doi: 10.3390/ma14030675
|
34 |
Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites [J]. Mat. Sci. Eng. A. Struct., 2018, 711: 643
doi: 10.1016/j.msea.2017.11.068
|
35 |
Xiao B L, Bi J, Zhao M J, et al. Effects of SiCp size on tensile property of aluminum matrix composites fabricated by powder metallurgical method [J]. Acta.Metall Sin., 2002, 38(9): 1006
|
|
肖伯律, 毕 敬, 赵明久, 等. 碳化硅尺寸对铝基复合材料拉伸性能和断裂机制的影响 [J]. 金属学报, 2002, 38(9): 1006.
|
36 |
Jin P, Liu Y, Lin S, et al. Effects of SiC particle size on tensile property and fracture behavior on partile reinforced aluminum metal matrix composites [J]. Chin. J. Mater. Res., 2009, 23(2): 211
|
|
金 鹏, 刘 越, 李 曙, 等. 碳化硅增强铝基复合材料的力学性能和断裂机制 [J]. 材料研究学报, 2009, 23(2): 211
|
37 |
Ma G N, Wang D, Xiao B L. Efect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al-Zn-Mg-Cu composites [J]. Acta. Metall. Sin., 2021, 34: 1447
doi: 10.1007/s40195-021-01254-w
|
38 |
Liu R X, Wu C D, Zhang J, et al. Microstructure and mechanical behaviors of the ultrafine grainedAA7075/B4C composites synthesized via one-step consolidation [J]. J. Alloys Compd., 2018, 748: 737
doi: 10.1016/j.jallcom.2018.03.152
|
39 |
Wen H, Topping T D, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering [J]. Acta Mater., 2013, 61(8): 2769
doi: 10.1016/j.actamat.2012.09.036
|
40 |
Bembalge O B, Panigrahi S K. Development and strengthening mechanisms of bulk ultrafine grained AA6063/SiC composite sheets with varying reinforcement size ranging from nano to micro domain [J]. J. Alloys Compd., 2018, 766: 355
doi: 10.1016/j.jallcom.2018.06.306
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|