Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (10): 747-758    DOI: 10.11901/1005.3093.2022.667
ARTICLES Current Issue | Archive | Adv Search |
Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films
YAN Chunliang1,2, GUO Peng2, ZHOU Jingyuan2, WANG Aiying2,3()
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films. Chinese Journal of Materials Research, 2023, 37(10): 747-758.

Download:  HTML  PDF(12136KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The work aims to study the effect of doped Cu content on the structure, electrical properties and carrier transport behavior of amorphous carbon (a-C) films. The Cu doped a-C (a-C:Cu) films were deposited by a homemade High Power Impulse Magnetron Sputtering set with the Cu-C composite target as sputtering source. A series of a-C: Cu films with Cu content less than 10% (atomic fraction) were deposited by adjusting the position of substrates. The results demonstrated that increasing the doped Cu content led to the enhancement of the content and cluster size of sp2-C in films. Particularly, as the Cu content increased from 2.77% to 7.28%, the sp2-C content increased from 48% to 54%. Accordingly, this decreased the bandgap width from 3.87 eV to 2.93 eV, which corresponds to the reduction of electrical resistivity and transmittance in a-C: Cu films. For a-C: Cu films with Cu content in the range of 2.77%~7.28%, the voltage was positively linear correlated with the excitation in the I-V test, suggesting the dominated ohmic behavior. The resistance of all the a-C:Cu films decreased monotonically with the increase of temperature, demonstrating the typical semiconductor behavior. Specifically, when the Cu content varied in the range of 2.77%~3.88%, the electrical transport of a-C: Cu films was ascribed to the three-dimensional Mott-type variable range hopping conduction in lower temperature from 150 K to 250 K and the thermal activation transport within higher temperature range of 250~350 K, respectively. However, for a-C: Cu films with Cu content of 5.4%~7.28%, only Mott-type variable range hopping conduction played the key role for the carrier transport in temperature of 150~350 K. The results showed that the optical and electrical properties of amorphous carbon films could be significantly controlled by doping Cu, which brought forward the promising potential to develop the carbon-based photoelectric devices with high-performance.

Key words:  foundational discipline in materials science      electrical properties      high power impulse magnetron sputtering      Cu doped amorphous carbon      band structure     
Received:  16 December 2022     
ZTFLH:  O484  
Fund: National Nature Science Foundation of China(U20A20296);Science and Technology 2025 Innovation Project of Ningbo(2020Z023);K C Wong Education Foundation Lu Jiaxi International Team Project(GJTD-2019-13);Natural Science Foundation of Zhejiang Province(LQ20E020004)
Corresponding Authors:  WANG Aiying, Tel: (0574)86685170, E-mail: aywang@nimte.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.667     OR     https://www.cjmr.org/EN/Y2023/V37/I10/747

Fig.1  Schematic diagram of the HiPIMS deposition equipment
Fig.2  SEM cross-sectional morphology of a-C:Cu films (a) S1, (b) S2, (c) S3, (d) S4
Fig.3  3D-AFM images of a-C: Cu films (a) S1, (b) S2, (c) S3, (d) S4
Fig.4  XPS spectra (a), the contents of C, O, Cu (b), C 1s spectra (c), sp2, sp3, and C-O/C=O contents (d), Cu 2p spectra (e) and Cu LMM Auger spectra (f) of a-C: Cu films with different Cu contents
Fig.5  Raman spectra (a), the fitting result (b) of a-C: Cu films with different Cu contents
Fig.6  XRD spectra of a-C:Cu films with different Cu contents
Fig.7  HRTEM image and corresponding SAED of a-C: Cu film with 2.77% (a, b) and 7.28% Cu (c, d)
Fig.8  EELS spectrum of a-C: Cu film with 2.77% and 7.28% Cu
Fig.9  I-V characteristic plots (a) and electrical resistiv-ity (b) at 300 K of the a-C: Cu films with differ-ent Cu contents
Fig.10  I-V plots of the a-C: Cu films with different Cu contents from 150 to 350 K
Fig.11  R-T behaviors of a-C: Cu films with different Cu contents from 150 to 350 K
Fig.12  Relationship between ln(R) and T-1/4 (a, c, e, f) and T-1 (b, d) at different temperature ranges for the samples with different Cu contents. The red lines are fitting results
Fig.13  Transmittance (a), Tauc plots (b) and optical bandgap (c) of a-C: Cu films with different Cu contents
Fig.14  Secondary electron cutoff (a), the distance from valence band (Ev) to the Fermi level (EF) (b) and band structure (c) of a-C: Cu films with different contents
1 Bhowmick S, Shirzadian S, Alpas A T. High-temperature tribological behavior of Ti containing diamond-like carbon coatings with emphasis on running-in coefficient of friction [J]. Surf. Coat. Technol., 2022, 431: 127995
doi: 10.1016/j.surfcoat.2021.127995
2 Zarei A, Momeni M. Effective target arrangement for detecting the properties of Ni doped diamond-like carbon by pulsed laser deposition [J]. Fuller. Nanotub. Carbon Nanostruct., 2022, 30: 942
doi: 10.1080/1536383X.2022.2050702
3 Khanmohammadi H, Wijanarko W, Cruz S, et al. Triboelectrochemical friction control of W- and Ag-doped DLC coatings in water-glycol with ionic liquids as lubricant additives [J]. RSC Adv., 2022, 12: 3573
doi: 10.1039/d1ra08814a pmid: 35425368
4 Rusop M, Omer A M M, Adhikari S, et al. Effects of deposition gas pressure on the properties of hydrogenated amorphous carbon nitride films grown by surface wave microwave plasma chemical vapor deposition [J]. Diam. Relat. Mater., 2005, 14: 975
doi: 10.1016/j.diamond.2004.12.040
5 Kim I S, Shim C E, Kim S W, et al. Amorphous carbon films for electronic applications [J]. Adv. Mater., doi: 10.1002/adma.202204912
6 Tian Q L, Zhao X N, Lin Y, et al. Thermal stable and low current complementary resistive switch with limited Cu source in amorphous carbon [J]. Appl. Phys. Lett., 2022, 121(18): 183502
doi: 10.1063/5.0118779
7 Tamulevičius S, Meškinis Š, Tamulevičius T, et al. Diamond like carbon nanocomposites with embedded metallic nanoparticles [J]. Rep. Prog. Phys., 2018, 81(2): 024501
8 Li X W, Zhang D, Lee K R, et al. Effect of metal doping on structural characteristics of amorphous carbon system: a first-principles study [J]. Thin Solid Films, 2016, 607: 67
doi: 10.1016/j.tsf.2016.04.004
9 Yaremchuk I, Meškinis Š, Bulavinets T, et al. Effect of oxidation of copper nanoparticles on absorption spectra of DLC: Cu nanocomposites [J]. Diam. Relat. Mater., 2019, 99: 107538
doi: 10.1016/j.diamond.2019.107538
10 Pandey B, Mukherjee J, Das B, et al. Nickel concentration dependent structural and optical properties of electrodeposited diamond like carbon thin films [J]. Eur. Phys. J. Appl. Phys., 2014, 66(1): 10302
doi: 10.1051/epjap/2014130435
11 Meškinis Š, Gudaitis R, Šlapikas K, et al. Giant negative piezoresistive effect in diamond-like carbon and diamond-like carbon-based nickel nanocomposite films deposited by reactive magnetron sputtering of Ni target [J]. ACS Appl. Mater. Interfaces, 2018, 10(18): 15778
doi: 10.1021/acsami.7b17439
12 Anderson P W. Absence of diffusion in certain random lattices [J]. Phys. Rev., 1958, 109: 1492
doi: 10.1103/PhysRev.109.1492
13 Tomidokoro M, Tunmee S, Rittihong U, et al. Electrical conduction properties of hydrogenated amorphous carbon films with different structures [J]. Materials, 2021, 14(9): 2355
doi: 10.3390/ma14092355
14 Tripathi R K, Panwar O S, Rawal I, et al. Study of variable range hopping conduction mechanism in nanocrystalline carbon thin films deposited by modified anodic jet carbon arc technique: application to light-dependent resistors [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(2): 2535
doi: 10.1007/s10854-020-05020-z
15 Abdolghaderi S, Astinchap B, Shafiekhani A. Electrical percolation threshold in Ag-DLC nanocomposite films prepared by RF-sputtering and RF-PECVD in acetylene plasma [J]. J. Mater. Sci.: Mater. Electron., 2016, 27(7): 6713
doi: 10.1007/s10854-016-4620-4
16 Wan C H, Zhang X Z, Vanacken J, et al. Electro- and magneto-transport properties of amorphous carbon films doped with iron [J]. Diam. Relat. Mater., 2011, 20(1): 26
doi: 10.1016/j.diamond.2010.11.001
17 Li X W, Lee K R, Wang A Y. Chemical bond structure of metal-incorporated carbon system [J]. J. Comput. Theor. Nanosci., 2013, 10(8): 1688
doi: 10.1166/jctn.2013.3110
18 Li X W, Wang A Y, Lee K R. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system [J]. Thin Solid Films, 2012, 520(19): 6064
doi: 10.1016/j.tsf.2012.05.010
19 Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng., 2002, 37R(4-6) : 129
20 Guo P, Li X W, Sun L L, et al. Stress reduction mechanism of diamond-like carbon films incorporated with different Cu contents [J]. Thin Solid Films, 2017, 640: 45
doi: 10.1016/j.tsf.2017.09.001
21 Kulak A I, Kondratyuk A V, Kulak T I, et al. Electrochemical pulsed deposition of diamond-like films by powerful coulostatic discharge in dimethylsulfoxide solution of lithium acetylide [J]. Chem. Phys. Lett., 2003, 378(1-2): 95
doi: 10.1016/S0009-2614(03)01258-2
22 Gong Y L, Jing P P, Zhou Y J, et al. Formation of rod-shaped wear debris and the graphitization tendency of Cu-doped hydrogenated diamond-like carbon films [J]. Diam. Relat. Mater., 2020, 102: 107654
doi: 10.1016/j.diamond.2019.107654
23 Zhou B, Liu Z B, Piliptsou D G, et al. Structure and optical properties of Cu-DLC composite films deposited by cathode arc with double-excitation source [J]. Diam. Relat. Mater., 2016, 69: 191
doi: 10.1016/j.diamond.2016.09.004
24 Ji L, Li H X, Zhao F, et al. Microstructure and mechanical properties of Mo/DLC nanocomposite films [J]. Diam. Relat. Mater., 2008, 17(11): 1949
doi: 10.1016/j.diamond.2008.04.018
25 Zhang H W, Tan H R, Jaenicke S, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen [J]. J. Catal., 2020, 389: 19
doi: 10.1016/j.jcat.2020.05.018
26 Liu Y Y, Sun M H, Yuan Y F, et al. Accommodation of silicon in an interconnected copper network for robust Li-ion storage [J]. Adv. Funct. Mater., 2020, 30(14): 1910249
doi: 10.1002/adfm.v30.14
27 Kim J Y, Hong D, Lee J C, et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products [J]. Nat. Commun., 2021, 12(1): 3765
doi: 10.1038/s41467-021-24105-9
28 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B(20) : 14095
29 Xie J, Komvopoulos K. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films [J]. J. Appl. Phys., 2016, 119(9): 095304
30 Cuomo J J, Doyle J P, Bruley J, et al. Sputter deposition of dense diamond-like carbon-films at low-temperature [J]. Appl. Phys. Lett., 1991, 58(5): 466
doi: 10.1063/1.104609
31 Wang N, Komvopoulos K. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition [J]. J. Mater. Res., 2013, 28(16): 2124
doi: 10.1557/jmr.2013.206
32 Majeed S, Siraj K, Naseem S, et al. Structural and optical properties of gold-incorporated diamond-like carbon thin films deposited by RF magnetron sputtering [J]. Mater. Res. Express, 2017, 4(7): 076403
33 Pandey B, Hussain S. Effect of nickel incorporation on the optical properties of diamond-like carbon (DLC) matrix [J]. J. Phys. Chem. Solids, 2011, 72(10): 1111
doi: 10.1016/j.jpcs.2011.06.003
34 Hu A, Alkhesho I, Zhou H, et al. Optical and microstructural properties of diamond-like carbon films grown by pulsed laser deposition [J]. Diam. Relat. Mater., 2007, 16(1): 149
doi: 10.1016/j.diamond.2006.04.008
35 Robertson J. Recombination and photoluminescence mechanism in hydrogenated amorphous carbon [J]. Phys. Rev., 1996, 53B(24) : 16302
36 Siraj K, Khaleeq-ur-Rahman M, Rafique M S, et al. Pulsed laser deposition and characterization of multilayer metal-carbon thin films [J]. Appl. Surf. Sci., 2011, 257(15): 6445
doi: 10.1016/j.apsusc.2011.02.032
37 Li J F, Li Z Y, Liu X M, et al. Interfacial engineering of Bi2S3/Ti3C2T x MXene based on work function for rapid photo-excited bacteria-killing [J]. Nat. Commun., 2021, 12(1): 1224
doi: 10.1038/s41467-021-21435-6
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[5] WANG Hao, ZHAO Hongfeng, KANG Jiashuang, ZHOU Yuanxiang, XIE Qingyun. Properties of ZnO Varistor Ceramics Co-doped with B2O3 and Al2O3[J]. 材料研究学报, 2021, 35(2): 110-114.
[6] LIN Wenwen, HE Xiaochun, XU Zhijun, WANG Ziheng, CHU Ruiqing. Influence of Bi2WO6 on Electric Properties of ZnO Varistor Ceramics[J]. 材料研究学报, 2020, 34(4): 285-290.
[7] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[8] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[9] Chen FU,Likun WANG,Rumeng QIU,Gui WANG,Wenhao CAI,Jingkai YANG,Hongli ZHAO. Effect of Solvents on Structure and Photoelectric Properties of FTO Thin Films[J]. 材料研究学报, 2019, 33(4): 277-283.
[10] Li WANG, Peng GUO, Xiao ZUO, Dong ZHANG, Meidong HUANG, Peiling KE, Aiying WANG. Influence of Substrate Bias on Microstructure, Optical- and Electrical- Properties of Amorphous- Carbon Films Prepared by High Power Pulse Magnetron Sputtering[J]. 材料研究学报, 2018, 32(4): 283-289.
[11] Bijun FANG, Xing LIU, Zhenqian ZHANG, Zhihui CHEN, Jianning DING, Xiangyong ZHAO, Haosu LUO. Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2017, 31(4): 248-254.
[12] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[13] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[14] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[15] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
No Suggested Reading articles found!