Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (9): 697-705    DOI: 10.11901/1005.3093.2022.347
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases
OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei()
School of Aeronautical Manufacture Engineering, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases. Chinese Journal of Materials Research, 2023, 37(9): 697-705.

Download:  HTML  PDF(15490KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-alloys Mg97Y1.5Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97Y0.5Er1.5Ni1 were fabricated by gravity casting method. Then the microstructure and tensile properties of the as-cast and solution-treated (520℃, 12 h) alloys were investigated by means of SEM with EDS, TEM and electronic universal testing machine. The results show that the as-cast alloys Mg97Y1.5Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97-Y0.5Er1.5Ni1 are mainly composed of α-Mg matrix and 18R-LPSO phase. The grain size of α-Mg in the as-cast Mg97Y1Er1Ni1 alloy is the smallest and the volume fraction of LPSO phase is the highest among all the three alloys. Moreover, the as-cast Mg97Y1Er1Ni1 alloy presents the finest particles of LPSO phase and they also distribute much uniformly. Therefore, the as-cast Mg97Y1Er1Ni1 alloy shows the best tensile properties. After solid solution treatment at 520℃ for 12 h, the three alloys Mg97Y1.5-Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97Y0.5Er1.5Ni1 all consist mainly of α-Mg matrix and 18R-LPSO phase. Inside the grains of the solution-treated Mg97Y1.5Er0.5Ni1 alloy, it is found that there are some stacking faults, which does not have a complete periodicity. The tensile properties of the three solution-treated alloys are all enhanced compared with those of the as-cast alloys.

Key words:  metallic materials      Mg-Y-Er-Ni alloy      LPSO phase      microstructure      tensile property     
Received:  28 June 2022     
ZTFLH:  TG146.2+2  
Fund: National Natural Science Foundation of China(51401102)
Corresponding Authors:  ZHANG Lei,Tel: 13576062172,E-mail: niatzhanglei01@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.347     OR     https://www.cjmr.org/EN/Y2023/V37/I9/697

AlloysMgYErNi

Mg97Y1.5Er0.5Ni1

Mg97Y1Er1Ni1

Mg97Y0.5Er1.5Ni1

Bal.

Bal.

Bal.

5.04

3.42

1.78

3.11

6.43

9.47

2.29

2.11

2.31

Table 1  Chemical composition of the alloys (atomic fraction, %)
Fig.1  XRD spectra of as-cast Mg97Y2-x Er x Ni1 alloys
Fig.2  BSE images of as-cast Mg97Y2-x Er x Ni1 alloys (a) x=0.5, (b) x=1 and (c) x=1.5
PositionMgYErNi

A

B

C

90.69

90.64

90.68

3.62

2.36

0.94

1.22

2.94

3.72

4.47

4.56

4.66

Table 2  EDS analysis of points marked in Fig.2 (atomic fraction,%)
Fig.3  HRTEM image (a) and SAED pattern on zone axes B=[112¯0] (b) of LPSO phase in as-cast Mg97Y1Er1Ni1 alloy
Fig.4  Average grain size (a), average width of LPSO phase (b) and volume fraction of LPSO phase (c) in as-cast alloys
Fig.5  Tensile properties of as-cast alloys tested at room temperature
Fig.6  Fracture surface of as-cast Mg97Y0.5Er1.5Ni1 (a) and Mg97Y1Er1Ni1 alloys (b)
Fig.7  XRD spectra of solution-treated Mg97Y2-x Er x Ni1 alloys
Fig.8  BSE images of solution-treated Mg97Y2-x Er x Ni1 alloys (a) x=0.5, (b) x=1 and (c) x=1.5
PositionMgYErNi

A

B

C

D

89.48

98.14

89.91

90.39

3.86

0.71

2.48

1.32

1.48

1.15

2.79

3.51

5.18

-

4.62

4.78

Table 3  EDS analysis of points marked in Fig.8 (atomic fraction, %)
Fig.9  HRTEM image (a) and SAED pattern on zone axes B=[112¯0] (b) of LPSO phase in solution-treated Mg97Y1.5Er0.5Ni1 alloy
Fig.10  TEM BF image (a), HRTEM image (b) and SAED pattern on zone axes B=[112¯0] (c) of stacking faults in solution-treated Mg97Y1.5Er0.5Ni alloy
Fig.11  Average grain size (a), average width of LPSO phase (b) and volume fraction of LPSO phase (c) in solution-treated alloys
Fig.12  Tensile properties of solution-treated alloys tested at room temperature
Alloys

RE/%,

atomic fraction

UTS / MPaYS / MPaElongationg / %State

Mg97Y1Er1Ni1

Mg97Y1Er1Ni1

Mg96.23Zn0.88Dy2.21Er0.68[26]

Mg96.23Zn0.88Dy2.21Er0.68[26]

Mg97.5Zn0.9Y0.8Gd0.8[13]

Mg97.5Zn0.9Y0.8Gd0.8[13]

Mg98.5Y1Ni0.5[17]

Mg97Gd2Ni1[16]

2

2

2.89

2.89

1.6

1.6

1

2

223

229

150.51

123.29

228.8

210.2

208

203

124

128

84.36

95.79

149

104.6

93

-

8.0

8.1

6.74

7.03

3.2

7.8

8.0

8.8

As-cast

T4

As-cast

T4

As-cast

T4

As-cast

As-cast

Table 4  Tensile properties of present alloy and some other alloys reported in literatures
1 Sun H, Chen M, Cheng M, et al. Recrystallization and texture of magnesium alloy sheet during warm rolling based on multi-scale model [J]. Chin. J. Mater. Res., 2021, 35(5): 339
孙 贺, 陈 明, 程 明 等. 基于多尺度模型的镁合金薄板温轧再结晶和织构 [J]. 材料研究学报, 2021, 35(5): 339
2 Wang D J, Zhang M Q, Ji Z S, et al. Process and properties of graphene reinforced magnesium matrix composites prepared by in-situ method [J]. Chin. J. Mater. Res., 2021, 35(6): 474
王殿君, 张明秋, 吉泽升 等. 原位自生法制备石墨烯增强镁基复合材料的工艺和性能 [J]. 材料研究学报, 2021, 35(6): 474
3 Liu Y, Kang R, Feng X H, et al. Microstructure and mechanical properties of Mg-Al-Ca-Mn-Zn wrought magnesium alloy [J]. Chin. J. Mater. Res., 2022, 36(1): 13
刘 洋, 康 锐, 冯小辉 等. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能 [J]. 材料研究学报, 2022, 36(1): 13
4 Gu J Q, Tang W N, Xu S W. Evolution of tensile deformation microstructure of Mg-0.4Zn magnesium alloy extruded sheet [J]. Chin. J. Mater. Res., 2021, 37(7): 553
顾佳卿, 唐伟能, 徐世伟. Mg-0.4Zn镁合金挤压板拉伸变形组织的演变 [J]. 材料研究学报, 2021, 37(7): 553
5 Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans. JIM, 2001, 42: 1172
6 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at% Zn-2at% Y alloy studied by atomic-resolution Z-contrast STEM [J], Acta Mater., 2002, 50: 3845
doi: 10.1016/S1359-6454(02)00191-X
7 Luo Z, Zhang S. High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy [J]. J. mater. Sci. lett., 2000, 19(9): 813.
doi: 10.1023/A:1006793411506
8 Chuang W S, Huang J C, Lin P H, et al. Deformation mechanisms and mechanical properties of (0001) Mg-Zn-Y 18R-LPSO single crystals [J]. J. Alloy. Compd., 2019, 772: 288
doi: 10.1016/j.jallcom.2018.09.091
9 Hagihara K, Li Z, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J], Acta Mater., 2019, 163: 226
doi: 10.1016/j.actamat.2018.10.016
10 Du X H, Duan G S, Hong M, et al. Effect of V on the microstructure and mechanical properties of Mg-10Er-2Cu alloy with a long period stacking ordered structure [J]. Mater. Lett., 2014, 122(5): 312
doi: 10.1016/j.matlet.2014.02.056
11 Liu H, Xue F, Bai J, et al. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy [J]. Mater. Sci. Eng. A, 2013, 585: 387
doi: 10.1016/j.msea.2013.07.036
12 Yang K, Zhang J S, Zong X M, et al. Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy [J]. Mater Sci.Eng. A, 2016, 669: 340
13 Liao H, Kim J, Lee T, et al. Effect of heat treatment on LPSO morphology and mechanical properties of Mg-Zn-Y-Gd alloys [J]. J. Magnes. Alloy., 2020, 8: 1120.
doi: 10.1016/j.jma.2020.06.009
14 Zhang L, Huang H, Zhang S, et al. Microstructure, mechanical properties and tribological behavior of two-phase Mg-Y-Cu alloys with long period stacking ordered phases [J]. Met. Mater. Int., 2021, 27: 1605
doi: 10.1007/s12540-019-00578-8
15 Kawamura Y, Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure [J]. Mater Trans., 2007, 48: 2986.
doi: 10.2320/matertrans.MER2007142
16 Wang D D, Zhang W B, Zong X M, et al. Abundant long period stacking ordered structure induced by Ni addition into Mg-Gd-Zn alloy [J]. Mater. Sci. Eng. A, 2014, 9.
17 Yang X, Wu S S, Lü S L, et al. Effects of Ni levels on microstructure and mechanical properties of Mg-Ni-Y alloy reinforced with LPSO structure [J]. J. Alloy. Compd., 2017, 726:2 76.
doi: 10.1016/j.jallcom.2017.08.003
18 Zhang L, Zhang S J, Ouyang K X, et al. Microstructure and mechanical properties of Mg-Er-Cu/Ni/Zn alloy with long period stacking ordered phases [J]. Adv. Eng. Mater., 2021:2100368.
19 Wen K, Du W B, Liu K, et al. Precipitation behavior of the 14H-LPSO structure in Mg-12Gd-2Er-1Zn-0.6Zr alloy [J]. Rare Metals, 2016, 5(35): 367
20 Wang Y, Zhang F, Wang Y, et al. Effect of Zn content on the microstructure and mechanical properties of Mg-Gd-Y-Zr alloys [J]. Mater. Sci. Eng. A, 2019, 745: 149
doi: 10.1016/j.msea.2018.12.088
21 Zhu C, Zhou L, Zheng J, et al. Cluster on interface of LPSO phase and matrix in Mg-Gd-Y-Ni alloy: Atomic scale insight from HAADF-STEM [J]. Mater. Lett., 2019, 235: 71
doi: 10.1016/j.matlet.2018.09.162
22 Wu A R, Xia C Q. Study of the microstructure and mechanical properties of Mg-rare earth alloys [J]. Mater. Des., 2007, 28: 1963
doi: 10.1016/j.matdes.2006.04.023
23 Rokhlin L L, Dobatkina T V. Nikitina N I. Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups [J]. Mater. Sci. Forum. 2003, 419/422: 291
24 Fang D R, Zhao S S, Lin X P, et al. Correlation between microstructure and mechanical properties of columnar crystals in the directionally solidified Mg-Gd-Y-Er alloy [J]. J. Magnes. Alloy., 2022, 10(3): 743
doi: 10.1016/j.jma.2020.11.025
25 Lu R P, Jiao K, Li N T, et al. Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys [J]. J. Magnes. Alloy., .
26 Liu X Q, Zhao D S, Ye L L., et al. Effect of Er contents on the microstructure of long period stacking ordered phase and the corresponding mechanical properties in Mg-Dy-Er-Zn alloys [J]. Mater. Sci. Eng. A, 2018, 78: 461
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!