|
|
Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion |
PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya( ) |
School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China |
|
Cite this article:
PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion. Chinese Journal of Materials Research, 2023, 37(9): 713-720.
|
Abstract The titanium/steel composite pipe was prepared by hot extrusion at 1000℃ with low carbon steel Q235 as inner pipe and commercial pure titanium TA2 as cladding. The effect of interface microstructure on mechanical properties of titanium/steel composite pipe was studied by using metallographic microscope, field emission scanning electron microscope, X-ray diffractometer, microhardness tester and nano-indentation technology. The results show that the outer diameter of the extruded titanium/steel composite pipe is 22 mm, the inner and outer wall thicknesses are 3 mm and 0.2 mm respectively, the interface of steel/Ti pipes is well bonded, and the main phase of the interface is α-Fe, α-Ti, TiC and Fe2Ti, etc. The grain at the interface junction of the hot extruded Ti clad steel pipe is obviously refined, and the average grain size of the interface is 1.5 μm. The grain refinement of the Ti side of the composite is higher than that of the steel side. At the same time, under high temperature hot extrusion, the dislocation density at the bonding interface of the clad pipe increases, the grains are refined, and the microhardness is also improved. Low temperature annealing has different effects on the mechanical properties of both sides of titanium/steel composite interface, weakens the work hardening degree of titanium/steel composite pipe, improves the stiffness of interface material, and has little effect on the reaction layer formed by interface intermetallic compound.
|
Received: 07 September 2022
|
|
Fund: Anhui Province Key Laboratory of Metallurgical Engineering & Resource Recycling(SKF22-04);Natural Science Foundation Project of Colleges and Universities in Anhui Province(KJ2020A0272) |
Corresponding Authors:
ZHANG Mingya, Tel: 18855579770, E-mail: ahutzmh@163.com
|
1 |
Bae D S, Chae Y R, Lee S P, et al. Effect of post heat treatment on bonding interfaces in Ti/Mild steel/Ti clad materials [J]. Procedia Eng., 2011, 10: 996
doi: 10.1016/j.proeng.2011.04.164
|
2 |
Ha J S, Hong S I. Design of high strength Cu alloy interlayer for mechanical bonding Ti to steel and characterization of their tri-layered clad [J]. Mater. Des., 2013, 51: 293
doi: 10.1016/j.matdes.2013.04.068
|
3 |
Su H, Luo X B, Chai F, et al. Manufacturing technology and application trends of titanium clad steel plates [J]. J. Iron Steel Res. Int., 2015, 22(11): 977
doi: 10.1016/S1006-706X(15)30099-6
|
4 |
Kundu S, Sam S, Chatterjee S. Interface microstructure and strength properties of Ti-6Al-4V and microduplex stainless steel diffusion bonded joints [J]. Mater. Des., 2011, 32(5): 2997
doi: 10.1016/j.matdes.2010.12.052
|
5 |
Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti-V-Cr burn resistant titanium alloys [J]. Chin. J. Mater. Res., 2019, 33(7): 537
doi: 10.11901/1005.3093.2019.090
|
|
孙欢迎, 赵 军, 刘翊安 等. C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响 [J]. 材料研究学报, 2019, 33(7): 537
doi: 10.11901/1005.3093.2019.090
|
6 |
Kundu S, Chatterjee S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel [J]. Mater. Sci. Eng., 2008, 480A(1-2) : 316
|
7 |
Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100- x Cu x highentropy alloy interlayer [J]. J. Alloys Compd., 2019, 803: 649
doi: 10.1016/j.jallcom.2019.06.225
|
8 |
Xia Y Q, Dong H G, Hao X H, et al. Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal [J]. J. Mater. Process. Technol., 2019, 269: 35
doi: 10.1016/j.jmatprotec.2019.01.020
|
9 |
Zhou G S. The analysis for the manufacturing techniques of titanium tube and titanium clad Tubesheet [J]. China Chem. Ind. Equip., 2008, 10(4): 22
|
|
周国顺. 钛管和钛钢复合管板的制造技术浅析 [J]. 中国化工装备, 2008, 10(4): 22
|
10 |
Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium Alloy/Low carbon steel plate [J]. J. Mater. Eng. Perform., 2018, 27(4): 1664
doi: 10.1007/s11665-018-3279-9
|
11 |
Chen L S, Zhang X L, Zheng X P, et al. Research status of bimetal laminated composite plate prepared by rolling process [J]. Rare Met. Mater. Eng., 2018, 47(10): 3243
|
|
陈连生, 张鑫磊, 郑小平 等. 轧制双金属复合板材的研究现状 [J]. 稀有金属材料与工程, 2018, 47(10): 3243
|
12 |
Zhou Q, Liu R, Zhou Q, et al. Microstructure characterization and tensile shear failure mechanism of the bonding interface of explosively welded titanium-steel composite [J]. Mater. Sci. Eng., 2021, 820A: 141559
|
13 |
Mousavi S A A A, Sartangi P F. Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite [J]. Mater. Sci. Eng., 2008, 494A(1-2) : 329
|
14 |
Zhang Y, Sun D Q, Gu X Y, et al. Nd:YAG pulsed laser welding of TC4 Ti alloy to 301L stainless steel using Ta/V/Fe composite interlayer [J]. Mater. Lett., 2018, 212: 54
doi: 10.1016/j.matlet.2017.10.057
|
15 |
Bai Y L, Liu X F, Wang W J, et al. Current status and research trends in processing and application of titanium/steel composite plate [J]. Chin. J. Eng., 2021, 43(1): 85
|
|
白于良, 刘雪峰, 王文静 等. 钛/钢复合板及其制备应用研究现状与发展趋势 [J]. 工程科学学报, 2021, 43(1): 85
|
16 |
Luo R X. Study on extrusion forming technique for bimetal-lined pipe [J]. Hot Work. Technol., 2010, 39(13): 87
|
|
骆瑞雪. 双金属复合管的挤压成形工艺研究 [J]. 热加工工艺, 2010, 39(13): 87
|
17 |
Tian F, Li B, Zhou W M. Ultrasonic interface wave for interlaminar crack detection in steel-titanium composite pipe [J]. J. Pressure Vessel Technol., 2019, 141(4): 041401
|
18 |
Wang F L, Sheng G M, Deng Y Q. Impulse pressuring diffusion bonding of titanium to 304 stainless steel using pure Ni interlayer [J]. Rare Met., 2016, 35: 331
doi: 10.1007/s12598-014-0368-2
|
19 |
Fan J H, Li P F, Liang X J, et al. Interface evolution during rolling of Ni-clad stainless steel plate [J]. Chin. J. Mater. Res., 2021, 35(7): 493
|
|
范金辉, 李鹏飞, 梁晓军 等. 镍-不锈钢复合板轧制过程中界面的结合机制 [J]. 材料研究学报, 2021, 35(7): 493
|
20 |
Zhang B Q. Manufacturing technology of duplex metal pipe [J]. Mech. Electr. Eng. Technol., 2009, 38(3): 106
|
|
张宝庆. 双金属复合管的制造技术浅析 [J]. 机电工程技术, 2009, 38(3): 106
|
21 |
Yu C, Wu Z H, Guo Z X, et al. Microstructure and properties of hot-rolled bonded titanium clade steel plate [J]. Iron Steel, 2018, 53(4): 42
|
|
余 超, 吴宗河, 郭子楦 等. 热轧钛/钢复合板显微组织和性能 [J]. 钢铁, 2018, 53(4): 42
|
22 |
Cao M, Deng K K, Nie K B, et al. Microstructure, mechanical properties and formability of Ti/Al/Ti laminated composites fabricated by hot-pressing [J]. J. Manuf. Process., 2020, 58: 322
doi: 10.1016/j.jmapro.2020.08.013
|
23 |
Gao Y D, Zhou J P, Zhang Y, et al. Two pass laser welding of TC4 titanium alloy and 304 stainless steel using TA2/Q235 composite interlayer [J]. Mater. Lett., 2019, 255: 126521
doi: 10.1016/j.matlet.2019.126521
|
24 |
Bai Y L, Liu X F, Shi Z Z. Stress-induced alternating microstructures of titanium/steel bonding interface [J]. Mater. Lett., 2021, 298: 130019
doi: 10.1016/j.matlet.2021.130019
|
25 |
Momono T, Enjo T, Ikeuchi K. Effects of carbon content on the diffusion bonding of iron and steel to titanium [J]. ISIJ Int., 1990, 30(11): 978
doi: 10.2355/isijinternational.30.978
|
26 |
Chai X Y, Shi Z R, Chai F, et al. Effect of heating temperature on microstructure and mechanical properties of titanium clad steel by hot roll bonding [J]. Rare Met. Mater. Eng., 2019, 48(8): 2701
|
|
柴希阳, 师仲然, 柴 锋 等. 加热温度对轧制钛/钢复合板组织与性能的影响 [J]. 稀有金属材料与工程, 2019, 48(8): 2701
|
27 |
Wu C J, Chen G L, Qiang W J, et al. Metallic Materials. 2nd ed. [M]. Beijing: Metallurgical Industry Press, 2009: 9
|
|
吴承建, 陈国良, 强文江 等. 金属材料学(第2版). [M]. 北京: 冶金工业出版社, 2009: 9
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|