Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (8): 633-640    DOI: 10.11901/1005.3093.2022.479
ARTICLES Current Issue | Archive | Adv Search |
Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3
REN Fuyan1,3, OUYANG Erming2()
1.School of Engineering and Construction, Nanchang University, Nanchang 330031, China
2.School of Resources and Environment, Nanchang University, Nanchang 330031, China
3.School of Accounting, Xinjiang University of Science and Technology, Kuerle 830091, China
Cite this article: 

REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3. Chinese Journal of Materials Research, 2023, 37(8): 633-640.

Download:  HTML  PDF(7373KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite catalysts of Bi2O3/g-C3N4 were successfully prepared by means of liquid-phase precipitation and thermal polymerization methods. The microscopic morphology, crystal structure and photocatalytic properties of the composite catalysts were characterized by SEM, XRD, XPS, FT-IR and UV-Vis diffuse reflection etc. The results show that the prepared Bi2O3/g-C3N4 composite photocatalyst has good morphology and uniformity of grains. The Bi2O3/g-C3N4 composite catalyst showed good photocatalytic performance. Among all the prepared composite catalysts, the composite catalyst Bi2O3/g-C3N4-30% had the best photocatalytic performance. The removal rate of tetracycline hydrochloride (TCH) by Bi2O3/g-C3N4-30% composite catalyst was 70%, which was 1.66 times that of pure Bi2O3 and 1.44 times that of pure g-C3N4. In addition, the photocatalytic degradation of tetracycline hydrochloride was verified by capture experiments. The main active species of (TCH) is superoxide radical (·O2-).

Key words:  inorganic non-metallic materials      photocatalysis      antibiotics      degradation      Bi2O3      semiconductor materials     
Received:  06 September 2022     
ZTFLH:  X703.1  
Corresponding Authors:  OUYANG Erming, Tel: 15170217718, E-mail: youmer@ncu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.479     OR     https://www.cjmr.org/EN/Y2023/V37/I8/633

Fig.1  Schematic diagram of preparation of Bi2O3/g-C3N4 composites
Fig.2  SEM patterns of g-C3N4 (a), Bi2O3 (b) and Bi2O3/g-C3N4 materials (d), TEM patterns of Bi2O3/g-C3N4 materials (c) and EDS patterns of Bi2O3/g-C3N4 material (e)
Fig.3  XRD patterns of g-C3N4, Bi2O3 and Bi2O3/g-C3N4 materials
Fig.4  FT-IR images of g-C3N4, Bi2O3 and Bi2O3/g-C3N4 materials
Fig.5  XPS image of Bi2O3/g-C3N4 composite catalyst
Fig.6  UV-Vis diffuse reflectance spectra (a) and (Ahv)1/2 versus photon energy (hv) for g-C3N4, Bi2O3 and Bi2O3/g-C3N4 materials (b)
Fig.7  Degradation efficiency of TCH by different catalysts (a) and its first-order kinetic fitting diagram during the reaction process (b)
Fig.8  Cyclability of Bi2O3/g-C3N4 composites for degradation of TCH
Fig.9  Removal rate of tetracycline hydrochloride (a) and its corresponding removal rate histogram (b) under different trapping agent conditions
1 He Y J, Sutton N B, Rijnaarts H H H, et al. Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation [J]. Appl. Catal., 2016, 182B: 132
2 Quyen V T, Kim H J, Kim J, et al. Synthesizing S-doped graphitic carbon nitride for improvement photodegradation of tetracycline under solar light [J]. Solar Energy, 2021, 214: 288
doi: 10.1016/j.solener.2020.12.016
3 Xu L Y, Zhang H, Xiong P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review [J]. Sci. Total Environ., 2021, 753: 141975
doi: 10.1016/j.scitotenv.2020.141975
4 Roy N, Alex S A, Chandrasekaran N, et al. A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts [J]. J. Environ. Chem. Eng., 2021, 9: 104796
doi: 10.1016/j.jece.2020.104796
5 Hou X, Wang Z Q, Chen J J, et al. Facile construction of silver-based solid solution heterophase for efficient visible-light-driven photocatalytic degradation of tetracycline [J]. Chem. Eng. J., 2021, 414: 128915
doi: 10.1016/j.cej.2021.128915
6 Wu Y C, Chaing Y C, Huang C Y, et al. Morphology-controllable Bi2O3 crystals through an aqueous precipitation method and their photocatalytic performance [J]. Dyes Pigm., 2013, 98(1): 25
doi: 10.1016/j.dyepig.2013.02.006
7 Leontie L, Caraman M, Delibaş M, et al. Optical properties of bismuth trioxide thin films [J]. Mater. Res. Bull., 2001, 36(9): 1629
doi: 10.1016/S0025-5408(01)00641-9
8 Yu H J, Li J Y, Zhang Y H, et al. Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction [J]. Angew. Chem. Int. Ed., 2019, 58: 3880
doi: 10.1002/anie.v58.12
9 Yakout S M. New efficient sunlight photocatalysts based on Gd, Nb, V and Mn doped alpha-Bi2O3 phase [J]. J. Environ. Chem. Eng., 2020, 8(1): 103644
doi: 10.1016/j.jece.2019.103644
10 Ji R, Ma C C, Ma W, et al. Z-scheme MoS2/Bi2O3 heterojunctions: enhanced photocatalytic degradation performance and mechanistic insight [J]. New J. Chem., 2019, 43(30): 11876
doi: 10.1039/C9NJ02521A
11 Ke J, Liu J, Sun H Q, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation [J]. Appl. Catal., 2017, 200B: 47
12 Che H N, Liu C B, Hu W, et al. NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions [J]. Catal. Sci. Technol., 2018, 8(2): 622
doi: 10.1039/C7CY01709J
13 You S Z, Hu Y, Liu X C, et al. Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light [J]. Appl. Catal., 2018, 232B: 288
14 Liu H, Luo M, Hu J C, et al. β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance [J]. Appl. Catal., 2013, 140-141B: 141
15 Wang Y C, Liu X Y, Wang X X, et al. Metal-organic frameworks based photocatalysts: architecture strategies for efficient solar energy conversion [J]. Chem. Eng. J., 2021, 419: 129459
doi: 10.1016/j.cej.2021.129459
16 Chen Y L, Wang L J, Wang W Z, et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2- x Se core-shell nanowire arrays fabricated by ion-replacement method [J]. Appl. Catal., 2017, 209B: 110
17 Majdoub M, Anfar Z, Amedlous A. Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications [J]. ACS Nano, 2020, 14(10): 12390
doi: 10.1021/acsnano.0c06116
18 Ali W, Zhang X L, Zhang X X, et al. Improved visible-light activities of g-C3N4 nanosheets by co-modifying nano-sized SnO2 and Ag for CO2 reduction and 2,4-dichlorophenol degradation [J]. Mater. Res. Bull., 2020, 122: 110676
doi: 10.1016/j.materresbull.2019.110676
19 Liu S L, Chen J L, Xu D F, et al. Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication [J]. J. Mater. Res., 2018, 33(10): 1391
doi: 10.1557/jmr.2018.67
20 Xu Q L, Zhang L Y, Yu J G, et al. Direct Z-scheme photocatalysts: principles, synthesis, and applications [J]. Mater. Today, 2018, 21(10): 1042
doi: 10.1016/j.mattod.2018.04.008
21 He R A, Zhou J Q, Fu H Q, et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity [J]. Appl. Surf. Sci., 2018, 430: 273
doi: 10.1016/j.apsusc.2017.07.191
22 Zhang L P, Wang G H, Xiong Z Z, et al. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation [J]. Appl. Surf. Sci., 2018, 436: 162
doi: 10.1016/j.apsusc.2017.11.280
23 Alhaddad M, Navarro R M, Hussein M A, et al. Bi2O3/g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light [J]. Ceram. Int., 2020, 46(16): 24873
doi: 10.1016/j.ceramint.2020.06.271
24 Xue S, Hou X Y, Xie W H, et al. Dramatic improvement of photocatalytic activity for N-doped Bi2O3/g-C3N4 composites [J]. Mater. Lett., 2015, 161: 640
doi: 10.1016/j.matlet.2015.09.067
25 Yan D, Wu X, Pei J Y, et al. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties [J]. Ceram. Int., 2020, 46(1): 696
doi: 10.1016/j.ceramint.2019.09.022
26 Zada A, Qu Y, Ali S, et al. Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2,4-dichlorophenol decomposition path [J]. J. Hazard. Mater., 2018, 342: 715
doi: 10.1016/j.jhazmat.2017.09.005
27 Hernández-Gordillo A, Medina J C, Bizarro M, et al. Photocatalytic activity of enlarged microrods of α-Bi2O3 produced using ethylenediamine-solvent [J]. Ceram. Int., 2016, 42(10): 11866
doi: 10.1016/j.ceramint.2016.04.109
28 Qi K Z, Zada A, Yang Y, et al. Design of 2D-2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant [J]. Res. Chem. Intermed., 2020, 46(12): 5281
doi: 10.1007/s11164-020-04262-0
29 Wang J, Wang G H, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation [J]. Chin. J. Catal., 2021, 42(1): 56
doi: 10.1016/S1872-2067(20)63634-8
30 Zhao K, Khan I, Qi K Z, et al. Ionic liquid assisted preparation of phosphorus-doped g-C3N4 photocatalyst for decomposition of emerging water pollutants [J]. Mater. Chem. Phys., 2020, 253: 123322
doi: 10.1016/j.matchemphys.2020.123322
31 Luo Y D, Huang Q Q, Li B, et al. Synthesis and characterization of Cu2O-modified Bi2O3 nanospheres with enhanced visible light photocatalytic activity [J]. Appl. Surf. Sci., 2015, 357: 1072
doi: 10.1016/j.apsusc.2015.09.126
32 Jiang H Y, Liu G, Wang T, et al. In situ construction of α-Bi2O3/gC3N4/β-Bi2O3 composites and their highly efficient photocatalytic performances [J]. RSC Advances, 2015, 113 (5): 92963
33 Geng X Q, Chen S, Lv X, et al. Synthesis of g-C3N4/Bi5O7I microspheres with enhanced photocatalytic activity under visible light [J]. Appl. Surf. Sci., 2018, 462: 18
doi: 10.1016/j.apsusc.2018.08.080
34 Zhao R Y, Sun X X, Jin Y R, et al. Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride [J]. J. Mater. Sci., 2019, 54(7): 5445
doi: 10.1007/s10853-018-03278-7
35 Kaur A, Kansal S K. Insitu synthesis, characterization of Z-scheme g-C3N4/Bi2O3 as photocatalyst for degradation of azo dye, Amido black-10B under solar irradiation [J]. Ceram. Int., 2022, 48: 29445
doi: 10.1016/j.ceramint.2022.07.008
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!