Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (5): 353-361    DOI: 10.11901/1005.3093.2021.625
ARTICLES Current Issue | Archive | Adv Search |
Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel
JIANG Menglei1, DAI Binbin1, CHEN Liang2, LIU Hui1, MIN Shiling1, YANG Fan1, HOU Juan1,2()
1.School of Materials and Chemistry, University of Shanghai Science and Technology, Shanghai 200093, China
2.State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, China
Cite this article: 

JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel. Chinese Journal of Materials Research, 2023, 37(5): 353-361.

Download:  HTML  PDF(22586KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The impact of building dimensions on the corrosion performance of the selective laser melting (SLMed) 304L stainless steel with different thickness and width was investigated by changing the scanning track (T) and depositing layers (L). The results show that the coarsening of grain size and the accumulation of the residual stress, as well as the number of pits and the pitting area all increased with the increasing of sample size. Accordingly, the preliminary relationship between dimension design, microstructure morphology, corrosion performance and residual stress were established.

Key words:  metallic materials      selective laser melting      304L stainless steel      size effect      corrosion performance      NETFABB simulation     
Received:  12 November 2021     
ZTFLH:  TG178  
Fund: Shenzhen International Cooperation Research Science and Technology Program(GJHZ20200731095203011);State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment Opening Project(CSO-102-001);Natural Science Foundation of China(52073176);Natural Science Foundation of China(U22B2067)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.625     OR     https://www.cjmr.org/EN/Y2023/V37/I5/353

SampleCNPSCrCuMnNiOSiMo
Powder0.0060.0130.0270.00118.950.0330.0169.480.0290.0560.87
SLMed0.0150.0130.0270.00319.70.0320.0549.620.0310.0650.83
Table 1  Chemical composition of 304L stainless steel powder and SLMed-304L stainless steel (%, mass fraction)
Fig.1  Different building dimensions by changing the tracks (T) and layers (L)

1

Settled tracks

(T=20)

2

Settled tracks

(T=300)

3

Settled layers

(L=100)

T20-L100L100-T100T300-L100
T20-L500L100-T200T300-L500
T20-L700L100-T300T300-L700
T20-L1000-T300-L1000
Table 2  Abbreviations of different dimensional samples
Fig.2  Optical metallurgic morphology of fish-scale microstructure in vertical planes along with building direction (a) and microstructure in horizontal plane (b)
Fig.3  Metallurgical morphologies of the cellular sub-grains observed through SEM (a) and TEM (b)
Fig.4  Metallurgical images on building direction of SLM 304L stainless steel low tracks samples with different layers (a) T20-L100, (b) T20-L500, (c) T20-L700, (d) T20-L1000
Fig.5  Metallurgical images of SLM 304L stainless steel samples with different T×L sizes of T100-L100 (a), T200-L100 (b), T300-L100 (c), T300-L500 (d), T300-L700 (e) and T300-L1000 (f)
Fig.6  Grains distribution mappings in zones with increasing distance fin substrate along build direction in T20-L1000 samples (a) Z1 zone, (b) Z2 zone, (c) Z3 zone and (d) Z4 zone
Fig.7  Hardness measurement results of L100 components (a) and T20 and T300 components (b)
Fig.8  Pitting micrographs of samples with different size (a) T20-L100, (b) T20-L500, (c) T20-L700, (d) T20-L1000, (e) T100-L100, (f) T200-L100, (g) T300-L100, (h) T300-L100, (i) T300-L500, (j) T300-L700 and (k) T300-L1000
Fig.9  Pitting average size and area ratio of samples with different size (a) low track (T=20) samples with settled tracks and increased layers: T20-L100, T20-L500, T20-L700, T20-L1000, (b) high track (T=300) samples with settled tracks and increased layers: T300-L100, T300-L500, T300-L700, T300-L1000, and (c) settled layer (L100) with increasing tracks of L100-T20, L100-T100, L100-T200 and L100-T300
Fig.10  Simulation result of NetFabb (a)T20-L10, (b) T100-L100, (c) T200-L100 and (d) T300-L100
1 Zhang Y, Zhang J, Yan Q, et al. Amorphous alloy strengthened stainless steel manufactured by selective laser melting: Enhanced strength and improved corrosion resistance [J]. Scripta Materialia, 2018, 148: 20
doi: 10.1016/j.scriptamat.2018.01.016
2 Yvon P, Carré F. Structural materials challenges for advanced reactor systems [J]. Journal of Nuclear Materials, 2009, 385(2): 217
doi: 10.1016/j.jnucmat.2008.11.026
3 Lalhe M, Hughes A E, Xu W, et al. Unexpected erosion-corrosion behavior of 316L stainless steel produced by selective laser melting [J]. Corrosion Science, 2019, 155: 67
doi: 10.1016/j.corsci.2019.04.028
4 Liu J, Song Y, Chen C, et al. Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting [J]. Materials and Design, 2020, 186: 108355
doi: 10.1016/j.matdes.2019.108355
5 Carboni C, Peyer P, Ranger E, et al. Influence of high power diode laser surface melting on the pitting corrosion resistance of type 316L stainless steel [J]. Journal of Materials Science, 2002, 37: 3715
doi: 10.1023/A:1016569527098
6 Ziętala M, Durejko T, Polański M, et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping [J]. Mater. Sci. Eng. A, 2016, 677: 1
doi: 10.1016/j.msea.2016.09.028
7 Wang Y M, Voisin T, Mckeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nature Materials, 2018, 17(1): 63
doi: 10.1038/nmat5021 pmid: 29115290
8 Hou J, Chen W, Chen Z, et al. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel [J]. J. Mater. Sci. Technol., 2020, 48: 63
doi: 10.1016/j.jmst.2020.01.011
9 Lodhi M J K, Deen K M, Haider W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media [J]. Materialia, 2018, 2: 111
doi: 10.1016/j.mtla.2018.06.015
10 Hara N, Hirabayashi K, Sugawara Y, et al. Improvement of pitting corrosion resistance of type 316L stainless steel by potentiostatic removal of surface MnS inclusions [J]. International Journal of Corrosion, 2012, (1): 482730
11 Stewart J, Williams D E. The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions [J]. Corrosion Science, 1992, 33(3): 457
doi: 10.1016/0010-938X(92)90074-D
12 Castle J E, Ke R. Studies by auger spectroscopy of pit initiation at the site of inclusions in stainless steel [J]. Corrosion Science, 1990, 30(4-5): 409
doi: 10.1016/0010-938X(90)90047-9
13 Sun Y, Moroz A, Alrbaey K. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel [J]. Journal of Materials Engineering and Performance, 2014, 23(2):518
doi: 10.1007/s11665-013-0784-8
14 Macatangay D A, Thomas S, Birbilis N, et al. Unexpected interface corrosion and sensitization susceptibility in additively manufactured austenitic stainless steel [J]. Corrosion, 2018, 74(2): 153
doi: 10.5006/2723
15 Laleh M, Hughes A E, Yang S, et al. Two and three-dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting [J]. Corrosion Science, 2020, 165: 108394
doi: 10.1016/j.corsci.2019.108394
16 Ettefagh A H, Guo S, Raush J. Corrosion performance of additively manufactured stainless steel parts: A review [J]. Additive Manufacturing, 2021, 37: 101689
doi: 10.1016/j.addma.2020.101689
17 Sander G, Thomas S, Cruz V, et al. On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting [J]. Journal of The Electrochemical Society, 2017, 164(6): C250
doi: 10.1149/2.0551706jes
18 Duan Z, Man C, Dong C, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores [J]. Corrosion Science, 2020, 167: 108520
doi: 10.1016/j.corsci.2020.108520
19 Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting [J]. Materials Characterization, 2013, 84: 153
doi: 10.1016/j.matchar.2013.07.012
20 Yang N, Yee J, Zheng B, et al. Process-structure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering [J]. Journal of Thermal Spray Technology, 2017, 26(4): 610
doi: 10.1007/s11666-016-0480-y
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!