Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (5): 362-370    DOI: 10.11901/1005.3093.2021.633
ARTICLES Current Issue | Archive | Adv Search |
Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy
ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei(), XU Pian
School of Aeronautical Manufacture Engineering, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy. Chinese Journal of Materials Research, 2023, 37(5): 362-370.

Download:  HTML  PDF(20814KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Mn on the solidification microstructure, tensile properties and corrosion behavior of Mg95.5Y3Cu1.5 alloy was investigated. The results show that with the increase of Mn content, the primary α-Mg phase in the alloy is gradually refined, and it also changes from dendritic to equiaxed dendritic morphology, while the morphology and volume fraction of LPSO phase do not change significantly. The addition of Mn improves the tensile properties of the alloy. When the Mn content is 0.9% (atom fraction) the yield strength, ultimate tensile strength and elongation are increased by 20.7%, 17.6% and 41.0% respectively compared with the alloy without Mn addition. In addition, the corrosion performance of the alloy is also improved. With the increase of Mn content, the volume of hydrogen evolution rate, mass loss rate and corrosion current density of the alloys gradually decrease, and the corrosion potential of the alloys, meanwhile, gradually moves towards positive direction.

Key words:  metallic materials      Mg-Y-Cu alloy      microstructure      tensile property      corrosion behavior      Mn content     
Received:  12 November 2021     
ZTFLH:  TG146.2+2  
Fund: National Natural Science Foundation of China(51401102)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.633     OR     https://www.cjmr.org/EN/Y2023/V37/I5/362

AlloysMgYCuMn

Mg95.5Y3Cu1.5

Mg95.2Y3Cu1.5Mn0.3

Mg94.9Y3Cu1.5Mn0.6

Mg94.6Y3Cu1.5Mn0.9

Bal.

Bal.

Bal.

Bal.

10.36

10.12

10.06

9.87

3.69

3.72

3.51

3.42

-

0.66

1.29

1.76

Table 1  Chemical composition of the alloys (%, mass fraction)
Fig.1  XRD spectra of as-cast Mg95.5-x Y3Cu1.5Mn x alloys
Fig.2  BSE image (a) and EDS mapping (b) of as-cast Mg94.6Y3Cu1.5Mn0.9 alloy
PositionMgYCuMn

A

B

C

89.31

45.15

97.65

5.86

54.85

2.01

4.64

-

-

0.19

-

0.34

Table 2  EDS analysis of points marked in Fig.2 (%, mass fraction)
Fig.3  TEM BF image (a), HRTEM image and SAED pattern on zone axes B=[112¯0] (b) of LPSO phase in as-cast Mg94.6Y3Cu1.5Mn0.9 alloy
Fig.4  OM images of as-cast Mg95.5-x Y3Cu1.5Mn x alloys with x=0 (a), x=0.3 (b), x=0.6 (c) and x=0.9 (d)
Alloy

Average grain size

/μm

Volume fraction of LPSO phase

/%

Mg95.5Y3Cu1.5

Mg95.2Y3Cu1.5Mn0.3

Mg94.9Y3Cu1.5Mn0.6

Mg94.6Y3Cu1.5Mn0.9

156±8

129±5

91±5

72±4

31.1±0.8

30.9±0.6

30.5±0.5

30.8±0.7

Table 3  Average grain size and volume fraction of LPSO phase of the alloys
Fig.5  BSE images of as-cast Mg95.5-x Y3Cu1.5Mn x alloys with x=0 (a), x=0.3 (b), x=0.6 (c) and x=0.9 (d)
Fig.6  Tensile tress-strain curves of as-cast Mg95.5-x Y3-Cu1.5Mn x alloys
Alloy

YS

/MPa

UTS

/MPa

Elongation

/%

Mg95.5Y3Cu1.5

Mg95.2Y3Cu1.5Mn0.3

Mg94.9Y3Cu1.5Mn0.6

Mg94.6Y3Cu1.5Mn0.9

169±6

181±5

185±4

204±5

239±7

255±6

268±6

281±5

3.9±0.2

4.3±0.2

4.9±0.3

5.5±0.2

Table 4  Tensile properties of the alloys tested at room temperature
Fig.7  Fracture surface of Mg95.5Y3Cu1.5 (a) and Mg94.6Y3Cu1.5Mn0.9 (b) alloys
Fig.8  Hydrogen evolution volumes as a function of immersion time for as-cast Mg95.5-x Y3Cu1.5Mn x alloys
Fig.9  Mass loss rate for as-cast Mg95.5-x Y3Cu1.5Mn x alloys after 24 h of immersion in 1% NaCl solution
Fig.10  Surface morphologies of Mg95.5Y3Cu1.5 (a, c ) and Mg94.6Y3Cu1.5Mn0.9 (b, d) alloys before (a, b) and after (c, d) removal of the corrosion products after 8 h of immersion in 1% NaCl solution
PositionMgONaYMn

A

B

28.57

39.34

70.73

59.83

0.34

0.27

0.36

0.32

-

0.24

Table 5  EDS analysis of points marked in Fig.10 (%, atom fraction)
Fig.11  Potentiodynamic polarization curves of as-cast Mg95.5-x Y3Cu1.5Mn x alloys in 1%NaCl solution
Alloy

Corrosion potential, φcorr

/V vs. SCE

Corrosion current density, Jcorr

/μA·cm-2

Pi

/mm·a-1

Mg95.5Y3Cu1.5

Mg95.2Y3Cu1.5Mn0.3

Mg94.9Y3Cu1.5Mn0.6

Mg94.6Y3Cu1.5Mn0.9

-1.58

-1.55

-1.54

-1.49

678.7

376.9

336.7

247.5

15.3

8.6

7.6

5.7

Table 6  Fitting results of polarization curves in Fig.11
1 Zhen R, Sun Y S, Shen X W, et al. Microstructure and mechanical properties of Mg-6Gd-4Y-xZn alloy reinforced by LPSO phase [J]. Chin. J. Mater. Res., 2018, 32(6): 439
甄 睿, 孙扬善, 沈学为 等. LPSO相增强Mg-6Gd-4Y-xZn合金的组织与力学性能 [J]. 材料研究学报, 2018, 32(6): 439
2 Zhen R, Wu Z, Xu H Y, et al. Microstructure and mechanical properties of Mg-13Gd-1Zn alloy [J]. Chin. J. Mater. Res., 2020, 34(3): 225
甄 睿, 吴 震, 许恒源 等. Mg-13Gd-1Zn合金的组织与力学性能[J]. 材料研究学报, 2020, 34(3): 225
3 Cao G H, Zheng Z X, Liu Y X, et al. Effect of microstructure evolution on superplastic properties of fine-grained Mg-Y-Nd alloy [J]. Chin. J. Mater. Res., 2019, 33(6): 452
曹耿华, 郑振华, 刘一雄 等. 微观组织演变对细晶Mg-Y-Nd合金超塑性性能的影响[J]. 材料研究学报, 2019, 33(6): 452
doi: 10.11901/1005.3093.2018.506
4 Liu J W, Zou C C, Wang H, et al. Hydrogen absorption and desorption kinetics and microstructure transformation of long-period Mg94Cu4Y2 hydrogen storage alloy [J]. Chin. J. Mater. Res., 2019, 2016, 30(4):248
刘江文, 邹长城, 王 辉 等. 长周期结构Mg94Cu4Y2储氢合金的吸放氢动力学和组织转变 [J]. 材料研究学报, 2016, 29(8):248
5 Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans. JIM, 2001, 42: 1172
doi: 10.2320/matertrans.42.1172
6 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at% Zn-2at% Y alloy studied by atomic-resolution Z-contrast STEM [J], Acta Mater., 2002, 50: 3845
doi: 10.1016/S1359-6454(02)00191-X
7 Wang J, Zhang J S, Zong X M, et al. Effects of Ca on the formation of LPSO phase and mechanical properties of Mg-Zn-Y-Mn alloy [J]. Mater Sci.Eng. A, 2015, 648: 37
8 Chuang W S, Huang J C, Lin P H, et al. Deformation mechanisms and mechanical properties of (0001) Mg-Zn-Y 18R-LPSO single crystals [J]. J. Alloy. Compd., 2019, 772: 288
doi: 10.1016/j.jallcom.2018.09.091
9 Hagihara K, Li Z, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J], Acta Mater., 2019, 163: 226
doi: 10.1016/j.actamat.2018.10.016
10 Du X H, Duan G S, Hong M, et al. Effect of V on the microstructure and mechanical properties of Mg-10Er-2Cu alloy with a long period stacking ordered structure [J]. Mater. Lett., 2014, 122(5): 312
doi: 10.1016/j.matlet.2014.02.056
11 Liu H, Xue F, Bai J, et al. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy [J]. Mater Sci.Eng. A, 2013, 585: 387
12 Yang K, Zhang J S, Zong X M, et al. Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy [J]. Mater Sci.Eng. A, 2016, 669: 340
13 Kawamura Y, Kasahara T, Izumi S, et al. Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure [J]. Scr. Mater., 2006, 55(5): 453
doi: 10.1016/j.scriptamat.2006.05.011
14 Zhang L, Huang H, Zhang S, et al. Microstructure, mechanical properties and tribological behavior of two-phase Mg-Y-Cu alloys with long period stacking ordered phases [J]. Met. Mater. Int., 2021, 27: 1605
doi: 10.1007/s12540-019-00578-8
15 Zeng R C, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials [J]. Adv. Eng. Mater., 2008, 10: 3
doi: 10.1002/(ISSN)1527-2648
16 Zhang J X, Zhang J S, Han F Y, et al. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42: 130
doi: 10.1016/j.jmst.2019.09.038
17 Metalnikov P, Ben-Hamu G, Templeman Y, et al. The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys [J]. Mater. Charact., 2018, 145: 101
doi: 10.1016/j.matchar.2018.08.033
18 Cho D H, Nam J H, Lee B W, et al. Effect of Mn addition on grain refinement of biodegradable Mg-4Zn-0.5Ca alloy [J]. J. Alloy. Compd., 2016, 676: 461
doi: 10.1016/j.jallcom.2016.03.182
19 Stanford N, Atwell D. The effect of Mn-rich precipitates on the strength of AZ31 extrudates [J]. Metall. Mater. Trans. A, 2013, 44(10): 4830
doi: 10.1007/s11661-013-1817-5
20 Wang C J, Jin Q L, Zhou R, et al. Effect of Mn on grain size of high-purity Mg-3Al alloys [J]. Chin. J Nonferrous Met., 2010, 20(8): 1496
王春建, 金青林, 周荣 等. Mn元素对高纯Mg-3Al合金晶粒尺寸的影响 [J]. 中国有色金属学报, 2010, 20(8): 1496
21 Shi Z W, Atrens A. An innovative specimen configuration for the study of Mg corrosion [J]. Corros. Sci., 2011, 53: 226
doi: 10.1016/j.corsci.2010.09.016
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!