Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (5): 341-352    DOI: 10.11901/1005.3093.2022.462
ARTICLES Current Issue | Archive | Adv Search |
Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels
XIA Bo1, WANG Bin2, ZHANG Peng2(), LI Xiaowu1, ZHANG Zhefeng1,2
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels. Chinese Journal of Materials Research, 2023, 37(5): 341-352.

Download:  HTML  PDF(31606KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of tempering temperature on the microstructure and impact toughness of two high-strength leaf spring steels 50CrMnSiVNb and 50CrMnMoVNb for automobile was comparatively studied by means of optical microscope, scanning electron microscope, transmission electron microscope and impact tester. The results show that compared with those of 50CrMnSiVNb steel, there are more segregation bands along with a larger proportion of large-angle grain boundaries in the microstructure of 50CrMnMoVNb steel, while the later steel shows less temper brittleness. When comparing the impact toughness of the two leaf spring steels, it is found that being quenched and then tempered in the range of 150~400℃ for the two steels, the 50CrMnSiVNb steel presents better impact toughness. The impact toughness of the steel tempered in this range is mainly affected by the degree of banded segregation, which is more prone to cleavage fracture and leads to a straighter impact crack propagation path; In the contrast, after the two steels were tempered in the range of 400~500℃, the 50CrMnMoVNb steel shows better impact toughness, and the impact toughness in this region is mainly affected by the tempering brittleness and the proportion of large-angle grain boundary. The tempering brittleness caused by the thin-film like carbides at the interface of the laths during tempering greatly worsens the impact toughness, while the large angle grain boundary has a stronger barrier effect to crack propagation and consumes more energy, leading to the improvement of the impact toughness.

Key words:  metallic materials      50CrMnMoVNb steel      50CrMnSiVNb steel      tempering temperature      impact toughness      microstructure     
Received:  26 August 2022     
ZTFLH:  TG142.1  
Fund: Special Fund Project of Hightech Industrialization Cooperation between Jilin Province and CAS(2020SYHZ0008);Special Fund Project of Hightech Industrialization Cooperation between Jilin Province and CAS(2021SYHZ0046)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.462     OR     https://www.cjmr.org/EN/Y2023/V37/I5/341

MaterialsCSiMnCrMoVNbFe
50CrMnMoVNb0.50.150.861.060.170.050.030Bal.
50CrMnSiVNb0.50.860.900.99˂0.020.110.027Bal.
Table 1  Chemical composition of the two leaf spring steels (mass fraction, %)
Fig.1  Volume fraction of α and γ phases calculated by Thermo-Calc
Fig.2  Tensile properties of the two spring steel tempered at different temperatures [6]
Fig.3  Metallographic microstructures of the two spring steels under different conditions (a, b) hot-rolling condition; (c, d) tempered at 150℃; (e, f) tempered at 250℃; (g, h) tempered at 350℃; (i, j) tempered at 450℃
Fig.4  TEM microstructures of the two spring steels tempered at different temperatures (a, b) 150℃; (c, d) 250℃; (e, f) 350℃; (g, h) 500℃
Fig.5  EBSD microstructures of the two spring steels tempered at 350℃ (a, b) EBSD image quality maps, red line: low-angle grain boundary, blue line: high-angle grain boundary; (c, d) grain size distribution and (e, f) grain boundary misorientation distribution
Fig. 6  EBSD microstructures of the two spring steels tempered at 500℃ (a, b) image quality maps; (c, d) grain size distribution and (e, f) grain boundary misorientation distribution
Fig.7  Impact toughness of the two spring steels tempered at different temperatures
Fig.8  Impact microscopic fractographies of the two spring steels tempered at different temperatures (a, b) 250℃; (c, d) 350℃; (e, f) 400℃; (g, h) 500℃
Fig.9  SEM morphologies and the EDS results of the dimples, cleavage planes at the impact fracture and the segregation bandings of 50CrMnMoVNb steel tempered at 250℃ (a) impact fracture morphology; (b) microstructures; (c) EDS element analysis results of cleavage surface and dimple; (d) EDS element analysis results of the banded segregation and matrix
Fig.10  Impact crack propagation path of 50CrMnMo-VNb steel tempered at 250℃
Fig.11  Effect of microstructures on the impact fracture mechanism and crack propagation path
Fig.12  XRD patterns of the two steels tempered at 250℃
1 Sun L. Evaluation and optimization of the ride comfort of hybrid bus based on the handling and stability [D]. Zhenjiang: Jiangsu University, 2012
孙 丽. 基于操纵稳定性的混合动力客车平顺性评价与优化 [D]. 镇江: 江苏大学, 2012
2 Jiang Y Q, Xiao B, Zhao P. Design and suspension performance analysis of vehicle steel spring [J]. Automob. Appl. Technol., 2018, (19): 147
姜永晴, 肖 冰, 赵 萍. 汽车钢板弹簧的设计与悬架性能分析 [J]. 汽车实用技术, 2018, (19): 147
3 Wang D Q Q. Fatigue property and fatigue cracking risk assessment of a surface strengthened 50CrMnMoVNb spring steel [D]. Shenyang: Northeastern University, 2018
王董琪琼. 表面强化50CrMnMoVNb弹簧钢疲劳性能与疲劳风险评估 [D]. 沈阳: 东北大学, 2018
4 Li H. Study on microstructure and properties of high strength spring steel [D]. Shenyang: Northeastern University, 2018
李 涵. 高强度弹簧钢组织与性能的研究 [D]. 沈阳: 东北大学, 2018
5 Wang D Q Q, Wang Q, Zhu Y K, et al. Evaluating the fatigue cracking risk of surface strengthened 50CrMnMoVNb spring steel with abnormal life time distribution [J]. Mater. Sci. Eng., 2018, 732A: 192
6 Xia B, Zhang P, Wang B, et al. A simultaneous improvement of the strength and plasticity of spring steels by replacing Mo with Si [J]. Mater. Sci. Eng., 2021, 820A: 141516
7 Ren C X, Wang D Q Q, Wang Q, et al. Enhanced bending fatigue resistance of a 50CrMnMoVNb spring steel with decarburized layer by surface spinning strengthening [J]. Int. J. Fatigue, 2019, 124: 277
doi: 10.1016/j.ijfatigue.2019.03.014
8 Zhu G W, Wu D, Lu S P. Effect of C- and W-content on microstructure and toughness of weld metal for low alloy Cr-Mo steel [J]. Chin. J. Mater. Res., 2021, 35: 481
朱高文, 吴 栋, 陆善平. C和W对低合金Cr-Mo钢焊缝金属组织和冲击韧性的影响 [J]. 材料研究学报, 2021, 35: 481
9 Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
10 Goulas C, Mecozzi M G, Sietsma J. Bainite formation in medium-carbon low-silicon spring steels accounting for chemical segregation [J]. Metall. Mater. Trans., 2016, 47A: 3077
11 Tang H Y, Wang Y, Wu G H, et al. Inclusion evolution in 50CrVA spring steel by optimization of refining slag [J]. J. Iron Steel Res. Int., 2017, 24(9): 879
doi: 10.1016/S1006-706X(17)30130-9
12 Wang M F. Analysis of the band structure in forged steel parts and heat treatment [J]. New Technol. New Process, 2003, (8): 32
王民方. 锻钢件带状组织的分析与热处理 [J]. 新技术新工艺, 2003, (8): 32
13 Chen J, Luan D C, Hu Z H, et al. Research on microstructure and mechanical properties of electroslag remelting H13-type die steel [J]. Hot Working Technol., 2019, 48(18): 146
陈 杰, 栾道成, 胡志华 等. 电渣重熔H13型模具钢组织及力学性能研究 [J]. 热加工工艺, 2019, 48(18): 146
14 He Q B, Wu H L, Yi T B, et al. Effect of homogenizing on microstructure and mechanical properties of 32Cr2Mo2NiVNb steel [J]. Heat Treat. Met., 2008, 33(8): 124
何庆兵, 吴护林, 易同斌 等. 均匀化退火对32Cr2Mo2NiVNb钢组织和性能的影响 [J]. 金属热处理, 2008, 33(8): 124
15 Sun J J, Jiang T, Liu H J, et al. Enhancement of impact toughness by delamination fracture in a low-alloy high-strength steel with Al alloying [J]. Metall. Mater. Trans., 2016, 47A: 5985
16 Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical property and microstructure of a low carbon high alloy martensitic bearing steel during tempering [J]. Chin. J. Mater. Res., 2019, 33(8): 561
李东辉, 李志敏, 肖茂果 等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(8): 561
doi: 10.11901/1005.3093.2019.095
17 Thomas G, Chen Y L. Structure and mechanical properties of Fe-Cr-Mo-C alloys with and without boron [J]. Metall. Trans., 1981, 12A: 933
18 Xia B, Zhang X M, Misra R D K, et al. Significant impact of cold-rolling deformation and annealing on damping capacity of Fe-Mn-Cr alloy [J]. J. Iron Steel Res. Int., 2020, 27(5): 566
doi: 10.1007/s42243-020-00386-0
19 Duan Q Q, Qu R T, Zhang P, et al. Intrinsic impact toughness of relatively high strength alloys [J]. Acta Mater., 2018, 142: 226
doi: 10.1016/j.actamat.2017.09.064
20 Zhang Y L, Liu H Y, Ruan X J, et al. Microsegregation behaviors of alloy elements and their effects on the formation of banded structure in pinion steels [J]. J. Univ. Sci. Technol. Beijing, 2009, 31(suppl.1) : 199
张延玲, 刘海英, 阮小江 等. 中低碳齿轮钢中合金元素的偏析行为及其对带状组织的影响 [J]. 北京科技大学学报, 2009, 31(): 199
21 Wang B, Zhang P, Duan Q Q, et al. Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, 711A: 533
22 Wang B, Duan Q Q, Zhang P, et al. Investigation on the cracking resistances of different ageing treated 18Ni maraging steels [J]. Mater. Sci. Eng., 2020, 711A: 138553
23 Li H F, Wang S G, Zhang P, et al. Crack propagation mechanisms of AISI 4340 steels with different strength and toughness [J]. Mater. Sci. Eng., 2018, 729A: 130
24 Irwin G R. Fracture Dynamics, Fracturing of Metals [M]. Cleveland: American Society for Metals, 1948: 147
25 Tu M Y, Hsu C A, Wang W H, et al. Comparison of microstructure and mechanical behavior of lower bainite and tempered martensite in JIS SK5 steel [J]. Mater. Chem. Phys., 2008, 107: 418
doi: 10.1016/j.matchemphys.2007.08.017
26 Zhang X Z, Knott J F. Cleavage Fracture in bainitic and martensitic microstructures [J]. Acta Mater., 1999, 47: 3483
doi: 10.1016/S1359-6454(99)00200-1
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!