Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (5): 332-340    DOI: 10.11901/1005.3093.2022.135
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrocatalytic Oxygen Evolution Performance of a Novel Porous MnNiCoCrFe High-entropy Alloy as Electrocatalytic Electrode Material
LI Hailong1,2,3, MU Juan1, WANG Yuanyuan2,3, GE Shaofan2,3, LIU Chunming1, ZHANG Haifeng1,2,3, ZHU Zhengwang2,3()
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LI Hailong, MU Juan, WANG Yuanyuan, GE Shaofan, LIU Chunming, ZHANG Haifeng, ZHU Zhengwang. Preparation and Electrocatalytic Oxygen Evolution Performance of a Novel Porous MnNiCoCrFe High-entropy Alloy as Electrocatalytic Electrode Material. Chinese Journal of Materials Research, 2023, 37(5): 332-340.

Download:  HTML  PDF(10395KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel three-dimensional porous self-supporting electrode material for electrochemical catalytic oxygen evolution were prepared by chemical etching method from a bulk high-entropy alloy Mn50Fe12.5Co12.5Ni12.5Cr12.5. The electrochemical test results show that the overpotential of the prepared electrode material is only 281 mV at the current of 10 mA·cm-2 and the Tafel slope is 63 mV/dec in an alkaline solution of 1 mol/L KOH, which is better than that of commercial RuO2. At the same time, the working voltage does not increase significantly after continuous operation for 50 h at the current density of 50 mA·cm-2, which reflects the excellent stability during electrocatalytic oxygen evolution process of the Mn-rich high-entropy porous alloy as electrocatalytic electrode material. The Nyquist plots show that the free-standing structure of the bulk HEA catalyst has outstanding electron transfer ability compared with the ordinary supported catalyst.

Key words:  metallic materials      electrocatalysts      high-entropy alloy      oxygen evolution      porous structure     
Received:  12 March 2022     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(52074257)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.135     OR     https://www.cjmr.org/EN/Y2023/V37/I5/332

Fig.1  XRD patterns of M50 HEA alloy and M50A HEA catalyst
Fig.2  SEM images of the surface of M50 (a) and EDS mappings of M50 after metallographic corrosion (b)
Fig.3  EDS spectrums of dendrite and interdendritic components of M50 (atomic fraction, %)
MnNiCoCrFe
Dendritic regions46.4310.0313.5014.6015.44
Interdendrite regions54.3315.3011.1410.338.90
Table 1  The content distribution of elements in dendritic regions and interdendrite regions, respectively (atomic fraction, %)
Fig.4  SEM (a~c) and EDS mapping (d, e) images of the surface of M50A eletrocatalysts
Fig.5  Electrocatalytic OER performance of M50, M50A and RuO2 HEA electrocatalysts in 1 mol/L KOH electrolyte (a) Polarization curves, (b) Tafel curves, (c) corresponding overpotential at 10 mA·cm-2 and Tafel slopes
Fig.6  CV curves at various scan rates of M50 (a), CV curves at various scan rates of M50A (b) and Cdl values of M50 and M50A (c)
Fig.7  Nyquist plots of M50, M50A and RuO2 (a), multi-current chronopotentiometry responses (b) and stability test of M50A electrocatalyst at 10 and 50 mA·cm-2 for 50 h (c)
CatalystsRs / Ω·cm2Cf / mF·cm2Rf / Ω·cm2Cdl / mF·cm-2Rct / Ω·cm2χ2
M502.4570.39140.78181.0553.6963.68×10-4
RuO22.4280.056946.9190.0342814.745.87×10-4
M50A2.2252.9370.511914.170.65571.93×10-4
Table 2  Fitting parameters of EET for different catalysts
Fig.8  High-resolution XPS spectra of the M50A electrocatalyst after OER process (a) full survey, (b) Mn 2p, (c) Ni 2p, (d) Co 2p, (e) Cr 2p, (f) Fe 2p and (g) O 1s
1 Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in china: strategies and countermeasures [J]. Resour. Conserv. Recy., 2022, 176: 105959
doi: 10.1016/j.resconrec.2021.105959
2 Mchugh P J, Stergiou A D, Symes M D. Decoupled electrochemical water splitting: from fundamentals to applications [J]. Adv. Energy Mater., 2020, 10(44): 2002453
doi: 10.1002/aenm.v10.44
3 Sivanantham A, Lee H, Hwang S W, et al. Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH [J]. J. Mater. Chem. A, 2021, 9(31): 16841
doi: 10.1039/D1TA02621F
4 Ji J P, Li G H, Geng F X, Mn-doped Co-Al LDHs and its potential use for overall water splitting [J]. Chin. J. Mater. Res., 2022, 36: 140
嵇锦鹏, 李国辉, 耿凤霞. Mn掺杂Co-Al金属氢氧化物的制备及其全解水电化学性能 [J]. 材料研究学报, 2022, 36: 140
doi: 10.11901/1005.3093.2021.258
5 Yu Z Y, Duan Y, Feng X Y, et al. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects [J]. Adv. Mater., 2021, 33(31): 2007100
doi: 10.1002/adma.v33.31
6 Weiß A, Siebel A, Bernt M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer [J]. J. Electrochem. Soc., 2019, 166(8): F487
doi: 10.1149/2.0421908jes
7 Gao R, Zhu J, Yan D P. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review [J]. Nanoscale, 2021, 13(32): 13593
doi: 10.1039/d1nr03409j pmid: 34477633
8 Wang M, Zhang L, He Y J, et al. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Chem. A, 2021, 9(9): 5320
doi: 10.1039/D0TA12152E
9 Wang C, Shang H Y, Li J, et al. Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis [J]. Chem. Eng. J., 2021, 420
10 Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials [J]. ACS Catal., 2012, 2(8): 1765
doi: 10.1021/cs3003098
11 Tian L, Li Z, Xu X N, et al. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis [J]. J. Mater. Chem. A, 2021, 9(23): 13459
doi: 10.1039/D1TA01108A
12 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
13 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
14 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4(8): 515
doi: 10.1038/s41578-019-0121-4
15 He Q F, Tang P H, Chen H A, et al. Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys [J]. Acta Mater., 2021, 216
16 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
17 Zhang Z L, Wang S Q, Xu B L, et al. Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chin. J. Mater. Res., 2021, 35 (3): 193
张泽灵, 王世琦, 徐邦利 等. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35: 193
18 Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
doi: 10.1016/j.jpowsour.2019.05.030
19 Katiyar N K, Biswas K, Yeh J W, et al. A perspective on the catalysis using the high entropy alloys [J]. Nano Energy, 2021, 88: 106261
doi: 10.1016/j.nanoen.2021.106261
20 Xie P F, Yao Y G, Huang Z N, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts [J]. Nat. Commun., 2019, 10: 4011
doi: 10.1038/s41467-019-11848-9 pmid: 31488814
21 Cui X D, Zhang B L, Zeng C Y, et al. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction [J]. Mrs. Commun., 2018, 8(3): 1230
doi: 10.1557/mrc.2018.111
22 Nellaiappan S, Katiyar N K, Kumar R, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization [J]. ACS Catal., 2020, 10(6): 3658
doi: 10.1021/acscatal.9b04302
23 Chen Z J, Zhang T, Gao X Y, et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution [J]. Adv. Mater., 2021, 33(33): 2101845
doi: 10.1002/adma.v33.33
24 Ye L, Wang J L, Zhang Y Q, et al. A self-supporting electrode with in-situ partial transformation of Fe-MOF into amorphous NiFe-LDH for efficient oxygen evolution reaction [J]. Appl. Surf. Sci., 2021, 556: 149781
doi: 10.1016/j.apsusc.2021.149781
25 Paulus U A, Wokaun A, Scherer G G, et al. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes [J]. Electrochim. Acta, 2002, 47(22): 3787
doi: 10.1016/S0013-4686(02)00349-3
26 Li H J, He Y, He T, et al. In-situ transformational mycelium-like metal phosphides-encapsulated carbon nanotubes coating on the stainless steel mesh as robust self-supporting electrocatalyst for water splitting [J]. Appl. Surf. Sci., 2021, 549: 149227
doi: 10.1016/j.apsusc.2021.149227
27 Zhang G L, Ming K S, Kang J L, et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction [J]. Electrochim. Acta, 2018, 279: 19
doi: 10.1016/j.electacta.2018.05.035
28 Jothi V R, Karuppasamy K, Maiyalagan T, et al. Corrosion and alloy engineering in rational design of high current density electrodes for efficient water splitting [J]. Adv. Energy Mater., 2020, 10(24): 1904020
doi: 10.1002/aenm.v10.24
29 Zhang Y, Xiao J, Lv Q Y, et al. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes [J]. Front. Chem. Sci. Eng., 2018, 12(3): 494
doi: 10.1007/s11705-018-1732-9
30 Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution [J]. Adv. Mater., 2020, 32(3): 1806326
doi: 10.1002/adma.v32.3
31 Ma A L, Zhang L J, Engelberg D, et al. Understanding crystallographic orientation dependent dissolution rates of 90Cu-10Ni alloy: New insights based on AFM/SKPFM measurements and coordination number/electronic structure calculations [J]. Corros. Sci., 2020, 164: 108320
doi: 10.1016/j.corsci.2019.108320
32 Yi X N, Ma A L, Zhang L M, et al. Crystallographic anisotropy of corrosion rate and surface faceting of polycrystalline 90Cu-10Ni in acidic NaCl solution [J]. Mater. Des., 2022, 215: 110429
doi: 10.1016/j.matdes.2022.110429
33 Alcalá M D, Real C, Fombella I, et al. Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy [J]. J. Alloy. Compd., 2018, 749: 834
doi: 10.1016/j.jallcom.2018.03.358
34 Yu P F, Fan N S, Zhang Y Y, et al. Microstructure evolution and composition redistribution of FeCoNiCrMn high entropy alloy under extreme plastic deformation [J]. Mater. Res. Lett., 2022, 10(3): 124
doi: 10.1080/21663831.2021.2023678
35 Elmaci G, Cerci S, Sunar-Cerci D. The evaluation of the long-term stability of α-MnO2 based OER electrocatalyst in neutral medium by using data processing approach [J]. J. Mol. Struct., 2019, 1195: 632
doi: 10.1016/j.molstruc.2019.06.016
36 Klaus S, Cai Y, Louie M W, et al. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity [J]. J. Phys. Chem. Lett., 2015, 119(13): 7243
37 Deng J, Nellist M R, Stevens M B, et al. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy [J]. Nano Lett., 2017, 17(11): 6922
doi: 10.1021/acs.nanolett.7b03313
38 Zhang S Q, Yu T, Wen H, et al. The latest development of CoOOH two-dimensional materials used as OER catalysts [J]. Chem. Commun., 2020, 56(98): 15387
doi: 10.1039/D0CC05876A
39 Liu X H, Wu J. Coupling interface constructions of NiO-Cr2O3 heterostructures for efficient electrocatalytic oxygen evolution [J]. Electrochim. Acta, 2019, 320: 134577
doi: 10.1016/j.electacta.2019.134577
40 Wang Z L, Liu W J, Hu Y M, et al. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea [J]. Appl. Catal B Environ., 2020, 272: 118959
doi: 10.1016/j.apcatb.2020.118959
41 Feng J X, Xu H, Dong Y, et al. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction [J]. Angew. Chem. Int. Edit., 2016, 55(11): 3694
doi: 10.1002/anie.201511447
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!