|
|
Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties |
YANG Qin1( ), WANG Zhen1, FANG Chunjuan2, WANG Ruodi1, GAO Dahang1 |
1.School of Chemistry and Chemical Engineering, Xi' an University of Architecture and Technology, Xi' an 710055, China 2.School of Science, Xi' an University of Architecture and Technology, Xi' an 710055, China |
|
Cite this article:
YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties. Chinese Journal of Materials Research, 2022, 36(8): 628-634.
|
Abstract Hydrogel of (CMC/AA/CB[8]/BET gel) with controllable mechanical properties was prepared with carboxymethyl cellulose and acrylic acid as raw material, while octagon melon ring and bentonite as double crosslinking agent. The structure and morphology of the prepared gel were characterized by FT-IR and SEM. The mechanical properties, adsorption properties, swelling and adsorption kinetics of the gel were investigated. The results show that CB[8] and BET formed a dense network structure through hydrogen bonding with AA grafted to CMC, which enhanced the mechanical properties of the gel;The swelling of the gel conforms to the quasi-second-order kinetic model and the theory of stress relaxation swelling hemicrystalline polymer; After the gel was soaked in acid, the hydrogen bond between the free H+ in the acid and CB[8] and BET significantly increased the breaking strength of the gel from 0.52 MPa to 3.0 MPa; The gel has a good adsorption effect on methylene blue, which accords with the quasi-second-order kinetic model.
|
Received: 26 July 2021
|
|
Fund: Natural Science Foundation of Shaanxi Province(2019JM-541) |
About author: YANG Qin, Tel: 13572551428, E-mail: 1004240879@qq.com
|
1 |
Sinha V, Chakma S. Advances in the preparation of hydrogel for wastewater treatment: a concise review [J]. J. Environ. Chem. Eng., 2019, 7(5): 103295
doi: 10.1016/j.jece.2019.103295
|
2 |
Basta A H, El-Saied H, Hasanin M S, et al. Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications [J]. Int. J. Biol. Macromol., 2018, 107(Pt.A): 1364
|
3 |
Ahmad M, Manzoor K, Ahmad S, et al. Preparation, kinetics, thermodynamics and mechanism evaluation of thiosemicarbazide modified green carboxymethyl cellulose as an efficient Cu (II) adsorbent [J]. J. Chem. Eng. Data., 2018, 63(6): 1905
doi: 10.1021/acs.jced.7b01008
|
4 |
Ahmed, Salama, Nadia, et al. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal [J]. Int. J. Biol. Macromol., 2015, 73(1): 72
doi: 10.1016/j.ijbiomac.2014.11.002
|
5 |
Vk A, Kv B, Tj C, et al. Carboxymethyl cellulose-based materials for infection control and wound healing: a review [J]. Int. J. Biol. Macromol., 2020, 164: 963
doi: 10.1016/j.ijbiomac.2020.07.160
|
6 |
Lai C, Tu M, Xia C, et al. Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass [J]. Energy Fuels., 2017, 31(11): 12317
doi: 10.1021/acs.energyfuels.7b02405
|
7 |
Ab A, Esb C, Mtc D, et al. Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity [J]. Int. J. Biol. Macromol., 2020, 163: 2465
doi: 10.1016/j.ijbiomac.2020.09.169
|
8 |
Suriyatem R, Noikang N, Kankam T, et al. Physical properties of carboxymethyl cellulose from palm bunch and bagasse agricultural wastes: effect of delignification with hydrogen peroxide [J]. Polymers, 2020, 12(7): 1505
doi: 10.3390/polym12071505
|
9 |
Yaradoddi J S, Banapurmath N R, Ganachari S V, et al. Biodegradable carboxymethyl cellulose based material for sustainable packaging application [J]. Sci. Rep., 2020, 10(1): 21960
doi: 10.1038/s41598-020-78912-z
|
10 |
Peng N, Hu D, Zeng J, et al. Superabsorbent cellulose-clay nanocomposite hydrogels for high efficient removal of dye in water [J]. ACS Sustain. Chem. Eng., 2016, 4(12): 7217
doi: 10.1021/acssuschemeng.6b02178
|
11 |
Zainal S H, Mohd N, Suhaili N, et al. Preparation of cellulose-based hydrogel: a review [J]. J. Mater. Sci. Technol., 2020, 10: 935
|
12 |
Tang Z W, Zhao M C, Wang Y, et al. Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination [J]. Int. J. Biol. Macromol., 2020, 144: 127
doi: 10.1016/j.ijbiomac.2019.12.076
|
13 |
Lin F, Lu X, Wang Z, et al. In situ polymerization approach to cellulose-polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties [J]. Cellulose, 2019, 26(3): 1825
doi: 10.1007/s10570-018-2171-y
|
14 |
Jeong D, Kim C, Kim Y, et al. Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties [J]. Eur. Polym. J., 2020, 127: 109586
doi: 10.1016/j.eurpolymj.2020.109586
|
15 |
Li N, Chen G X, Chen W, et al. Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength [J]. Carbohydr. Polym., 2017, 178: 159
doi: 10.1016/j.carbpol.2017.09.030
|
16 |
Jafarigol E, Salehi M B, Mortaheb H R. Preparation and assessment of electro-conductive poly (acrylamide-co-acrylic acid) carboxymethyl cellulose/reduced graphene oxide hydrogel with high viscoelasticity [J]. Chem. Eng. Res. Des., 2020, 162: 74
doi: 10.1016/j.cherd.2020.07.020
|
17 |
Chen, W, Bu Y, Li D, et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose [J]. Cellulose, 2020, 27: 853
doi: 10.1007/s10570-019-02797-z
|
18 |
Wang J H, Xue Y N, Wang Y Q, et al. High-strength and tough composite hydrogels reinforced by the synergistic effect of nano-doping and triple-network structures [J]. Eur. Polym. J., 2020, 142: 110122
doi: 10.1016/j.eurpolymj.2020.110122
|
19 |
Sinba V, Chakma S. Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution [J]. Environ. Sci. Technol., 2020, 17: 100620
|
20 |
Bagheri N, Lakouraj M M, Hasantabar V, et al. Biodegradable macro-porous CMC-polyaniline hydrogel: synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water [J]. J. Hazard. Mater., 2020, 403: 123631
doi: 10.1016/j.jhazmat.2020.123631
|
21 |
Bi Q, Hu Y P, Yang Q, et al. A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid [J]. Chin. J. Org. Chem., 2007, 27(7): 880
|
|
毕 强, 胡英鹏, 杨 琴 等. 水-盐酸两步分离瓜环混合物 [J]. 有机化学, 2007, 27(7): 880
|
22 |
Yang Q, Li X L, Jiang Y, et al. Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils [J]. Mater. Res. Innovations., 2014, 18(4): 280
doi: 10.1179/1433075X13Y.0000000136
|
23 |
Pekcan Ö. In situ fluorescence experiments to study swelling and slow release kinetics of disc-shaped poly (methyl methacrylate) gels made at various crosslinker densities [J]. Polymer, 1998, 39(22): 5351
doi: 10.1016/S0032-3861(97)10106-9
|
24 |
Schott H. Kinetics of swelling of polymers and their gels [J]. Journal of Pharmaceutical Science, 1992, 81(5)
|
25 |
Xiang Y, Peng Z, Chen D. A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties [J]. Eur. Polym. J., 2006, 42(9): 2125
doi: 10.1016/j.eurpolymj.2006.04.003
|
26 |
Yang Q, Fang C J, Zhao N, et al. Self-healing and swelling kinetics of a new polyacrylic acid hydrogels [J]. Chinese Journal of Materials Research, 2018, 32(8): 625
|
|
杨 琴, 房春娟, 赵 娜 等. 新型聚丙烯酸水凝胶的自愈及其溶胀动力学 [J]. 材料研究学报, 2018, 32(8): 625
|
27 |
Liu Y L, Su Y P, Yin Y, et al. Research progress of bentonite modified cementitious materials [J]. Materials Reports, 2021, 35(5): 5040
|
|
刘益良, 苏幼坡, 殷 尧 等. 膨润土改性胶凝材料的研究进展 [J]. 材料导报, 2021, 35(5): 5040
|
28 |
Chaudhuri S D, Mandal A, Dey A, et al. Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel [J]. Appl Clay Sci., 2020, 185: 105405
doi: 10.1016/j.clay.2019.105405
|
29 |
Liu C Y, Gao X P, Liu J, et al. Preparation and properties of sodium alginate/polyacrylamide/graphene oxide nanocomposite hydrogels [J]. Chinese Journal of Materials Research, 2015, 29(7): 517
|
|
刘翠云, 高喜平, 刘 捷 等. SA/PAM/GO纳米复合水凝胶的制备和性能 [J]. 材料研究学报, 2015, 29(7): 517
|
30 |
Zhang X Y, Zhao C Z, Xiang N P, et al. Chain entanglements and hydrogen bonds in carbopol microgel reinforced hydrogel [J]. Macromol Chem Phys, 2016, 217(19): 2139
doi: 10.1002/macp.201600245
|
31 |
Xiao J, Cui Y D, Fan H Q, et al. Preparation and action principle of pH-sensitive hydrogels [J]. Henan Chemical Industry, 2003, (08): 5
|
|
肖 君, 崔英德, 范会强 等. pH敏感性水凝胶的制备与作用原理 [J]. 河南化工, 2003, (08): 5
|
32 |
Liu X, Ma R, Wang X, et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review [J]. Environ. Pollut., 2019, 252: 62
doi: 10.1016/j.envpol.2019.05.050
|
33 |
Fazli W, Zhong C, Wang H S, et al. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles [J]. Polymers, 2017, 9(12): 636
doi: 10.3390/polym9120636
|
34 |
Shen X P, Shamshina J L, Berton P, et al. Hydrogels based on cellulose and chitin: fabrication, properties, and applications [J]. Green Chem., 2016, 18(1): 53
doi: 10.1039/C5GC02396C
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|