Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 628-634    DOI: 10.11901/1005.3093.2021.420
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties
YANG Qin1(), WANG Zhen1, FANG Chunjuan2, WANG Ruodi1, GAO Dahang1
1.School of Chemistry and Chemical Engineering, Xi' an University of Architecture and Technology, Xi' an 710055, China
2.School of Science, Xi' an University of Architecture and Technology, Xi' an 710055, China
Cite this article: 

YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties. Chinese Journal of Materials Research, 2022, 36(8): 628-634.

Download:  HTML  PDF(3583KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogel of (CMC/AA/CB[8]/BET gel) with controllable mechanical properties was prepared with carboxymethyl cellulose and acrylic acid as raw material, while octagon melon ring and bentonite as double crosslinking agent. The structure and morphology of the prepared gel were characterized by FT-IR and SEM. The mechanical properties, adsorption properties, swelling and adsorption kinetics of the gel were investigated. The results show that CB[8] and BET formed a dense network structure through hydrogen bonding with AA grafted to CMC, which enhanced the mechanical properties of the gel;The swelling of the gel conforms to the quasi-second-order kinetic model and the theory of stress relaxation swelling hemicrystalline polymer; After the gel was soaked in acid, the hydrogen bond between the free H+ in the acid and CB[8] and BET significantly increased the breaking strength of the gel from 0.52 MPa to 3.0 MPa; The gel has a good adsorption effect on methylene blue, which accords with the quasi-second-order kinetic model.

Key words:  polymer materials      carboxymethyl cellulose hydrogel      mechanical properties      kinetics      adsorption     
Received:  26 July 2021     
ZTFLH:  TQ430  
Fund: Natural Science Foundation of Shaanxi Province(2019JM-541)
About author:  YANG Qin, Tel: 13572551428, E-mail: 1004240879@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.420     OR     https://www.cjmr.org/EN/Y2022/V36/I8/628

Fig.1  Infrared absorption curves of AA and CMC/AA/CB[8]/BET gel
Fig.2  SEM morphology of different component hydrogels (a) CMC/AA gel, (b) CMC/AA/CB[8] gel, (c) CMC/AA/CB[8]/BET gel
Fig.3  Formation diagram of CMC/AA/CB[8]/BET gel
Fig.4  Swelling kinetic curve of CMC/AA/CB[8]/BET gel (a) and Swelling linear fitting curves (b)
Fig.5  Tensile stress-strain curves of different component hydrogels
Fig.6  Stress-strain curves of CMC/AA/CB[8]/BET gel before and after acid immersion
Fig.7  Removal rate and adsorption capacity curves of CMC/AA/CB[8]/BET gel for MB under neutral and acidic conditions
Fig.8  Adsorption rate and adsorption capacity curves of CMC/AA/CB[8]/BET gel for MB
Quasi-first-order kinetic equationQuasi-second-order kinetic equation
qexp/mg·g-1k1/min-1 qe/mg·g-1 R2k2/mg·g-1·min-1qe/mg·g-1R2
19.72.867 3.2638 0.97402.008 67.4 0.9999
Table 1  Kinetic parameters of adsorption of MB dye on CMC/AA/CB[8]/BET gel
1 Sinha V, Chakma S. Advances in the preparation of hydrogel for wastewater treatment: a concise review [J]. J. Environ. Chem. Eng., 2019, 7(5): 103295
doi: 10.1016/j.jece.2019.103295
2 Basta A H, El-Saied H, Hasanin M S, et al. Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications [J]. Int. J. Biol. Macromol., 2018, 107(Pt.A): 1364
3 Ahmad M, Manzoor K, Ahmad S, et al. Preparation, kinetics, thermodynamics and mechanism evaluation of thiosemicarbazide modified green carboxymethyl cellulose as an efficient Cu (II) adsorbent [J]. J. Chem. Eng. Data., 2018, 63(6): 1905
doi: 10.1021/acs.jced.7b01008
4 Ahmed, Salama, Nadia, et al. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal [J]. Int. J. Biol. Macromol., 2015, 73(1): 72
doi: 10.1016/j.ijbiomac.2014.11.002
5 Vk A, Kv B, Tj C, et al. Carboxymethyl cellulose-based materials for infection control and wound healing: a review [J]. Int. J. Biol. Macromol., 2020, 164: 963
doi: 10.1016/j.ijbiomac.2020.07.160
6 Lai C, Tu M, Xia C, et al. Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass [J]. Energy Fuels., 2017, 31(11): 12317
doi: 10.1021/acs.energyfuels.7b02405
7 Ab A, Esb C, Mtc D, et al. Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity [J]. Int. J. Biol. Macromol., 2020, 163: 2465
doi: 10.1016/j.ijbiomac.2020.09.169
8 Suriyatem R, Noikang N, Kankam T, et al. Physical properties of carboxymethyl cellulose from palm bunch and bagasse agricultural wastes: effect of delignification with hydrogen peroxide [J]. Polymers, 2020, 12(7): 1505
doi: 10.3390/polym12071505
9 Yaradoddi J S, Banapurmath N R, Ganachari S V, et al. Biodegradable carboxymethyl cellulose based material for sustainable packaging application [J]. Sci. Rep., 2020, 10(1): 21960
doi: 10.1038/s41598-020-78912-z
10 Peng N, Hu D, Zeng J, et al. Superabsorbent cellulose-clay nanocomposite hydrogels for high efficient removal of dye in water [J]. ACS Sustain. Chem. Eng., 2016, 4(12): 7217
doi: 10.1021/acssuschemeng.6b02178
11 Zainal S H, Mohd N, Suhaili N, et al. Preparation of cellulose-based hydrogel: a review [J]. J. Mater. Sci. Technol., 2020, 10: 935
12 Tang Z W, Zhao M C, Wang Y, et al. Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination [J]. Int. J. Biol. Macromol., 2020, 144: 127
doi: 10.1016/j.ijbiomac.2019.12.076
13 Lin F, Lu X, Wang Z, et al. In situ polymerization approach to cellulose-polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties [J]. Cellulose, 2019, 26(3): 1825
doi: 10.1007/s10570-018-2171-y
14 Jeong D, Kim C, Kim Y, et al. Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties [J]. Eur. Polym. J., 2020, 127: 109586
doi: 10.1016/j.eurpolymj.2020.109586
15 Li N, Chen G X, Chen W, et al. Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength [J]. Carbohydr. Polym., 2017, 178: 159
doi: 10.1016/j.carbpol.2017.09.030
16 Jafarigol E, Salehi M B, Mortaheb H R. Preparation and assessment of electro-conductive poly (acrylamide-co-acrylic acid) carboxymethyl cellulose/reduced graphene oxide hydrogel with high viscoelasticity [J]. Chem. Eng. Res. Des., 2020, 162: 74
doi: 10.1016/j.cherd.2020.07.020
17 Chen, W, Bu Y, Li D, et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose [J]. Cellulose, 2020, 27: 853
doi: 10.1007/s10570-019-02797-z
18 Wang J H, Xue Y N, Wang Y Q, et al. High-strength and tough composite hydrogels reinforced by the synergistic effect of nano-doping and triple-network structures [J]. Eur. Polym. J., 2020, 142: 110122
doi: 10.1016/j.eurpolymj.2020.110122
19 Sinba V, Chakma S. Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution [J]. Environ. Sci. Technol., 2020, 17: 100620
20 Bagheri N, Lakouraj M M, Hasantabar V, et al. Biodegradable macro-porous CMC-polyaniline hydrogel: synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water [J]. J. Hazard. Mater., 2020, 403: 123631
doi: 10.1016/j.jhazmat.2020.123631
21 Bi Q, Hu Y P, Yang Q, et al. A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid [J]. Chin. J. Org. Chem., 2007, 27(7): 880
毕 强, 胡英鹏, 杨 琴 等. 水-盐酸两步分离瓜环混合物 [J]. 有机化学, 2007, 27(7): 880
22 Yang Q, Li X L, Jiang Y, et al. Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils [J]. Mater. Res. Innovations., 2014, 18(4): 280
doi: 10.1179/1433075X13Y.0000000136
23 Pekcan Ö. In situ fluorescence experiments to study swelling and slow release kinetics of disc-shaped poly (methyl methacrylate) gels made at various crosslinker densities [J]. Polymer, 1998, 39(22): 5351
doi: 10.1016/S0032-3861(97)10106-9
24 Schott H. Kinetics of swelling of polymers and their gels [J]. Journal of Pharmaceutical Science, 1992, 81(5)
25 Xiang Y, Peng Z, Chen D. A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties [J]. Eur. Polym. J., 2006, 42(9): 2125
doi: 10.1016/j.eurpolymj.2006.04.003
26 Yang Q, Fang C J, Zhao N, et al. Self-healing and swelling kinetics of a new polyacrylic acid hydrogels [J]. Chinese Journal of Materials Research, 2018, 32(8): 625
杨 琴, 房春娟, 赵 娜 等. 新型聚丙烯酸水凝胶的自愈及其溶胀动力学 [J]. 材料研究学报, 2018, 32(8): 625
27 Liu Y L, Su Y P, Yin Y, et al. Research progress of bentonite modified cementitious materials [J]. Materials Reports, 2021, 35(5): 5040
刘益良, 苏幼坡, 殷 尧 等. 膨润土改性胶凝材料的研究进展 [J]. 材料导报, 2021, 35(5): 5040
28 Chaudhuri S D, Mandal A, Dey A, et al. Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel [J]. Appl Clay Sci., 2020, 185: 105405
doi: 10.1016/j.clay.2019.105405
29 Liu C Y, Gao X P, Liu J, et al. Preparation and properties of sodium alginate/polyacrylamide/graphene oxide nanocomposite hydrogels [J]. Chinese Journal of Materials Research, 2015, 29(7): 517
刘翠云, 高喜平, 刘 捷 等. SA/PAM/GO纳米复合水凝胶的制备和性能 [J]. 材料研究学报, 2015, 29(7): 517
30 Zhang X Y, Zhao C Z, Xiang N P, et al. Chain entanglements and hydrogen bonds in carbopol microgel reinforced hydrogel [J]. Macromol Chem Phys, 2016, 217(19): 2139
doi: 10.1002/macp.201600245
31 Xiao J, Cui Y D, Fan H Q, et al. Preparation and action principle of pH-sensitive hydrogels [J]. Henan Chemical Industry, 2003, (08): 5
肖 君, 崔英德, 范会强 等. pH敏感性水凝胶的制备与作用原理 [J]. 河南化工, 2003, (08): 5
32 Liu X, Ma R, Wang X, et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review [J]. Environ. Pollut., 2019, 252: 62
doi: 10.1016/j.envpol.2019.05.050
33 Fazli W, Zhong C, Wang H S, et al. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles [J]. Polymers, 2017, 9(12): 636
doi: 10.3390/polym9120636
34 Shen X P, Shamshina J L, Berton P, et al. Hydrogels based on cellulose and chitin: fabrication, properties, and applications [J]. Green Chem., 2016, 18(1): 53
doi: 10.1039/C5GC02396C
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[5] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[6] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[9] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[11] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[12] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[13] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[14] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!