Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 837-844    DOI: 10.11901/1005.3093.2021.457
ARTICLES Current Issue | Archive | Adv Search |
Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents
LONG Qing, WANG Chuanyang()
School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021, China
Cite this article: 

LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents. Chinese Journal of Materials Research, 2022, 36(11): 837-844.

Download:  HTML  PDF(3903KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polymethyl methacrylate (PMMA) with different carbon black (CB) contents were prepared by melt blending. Based on the solid-state reaction kinetics, the thermal degradation behavior of PMMA with different CB contents was explored. Through non-isothermal thermogravimetric analysis (TGA) experiments under the conditions of different heating rates, the thermal degradation kinetic models of PMMA with different CB contents were built by four methods, including Friedman, FWO, KAS and Freeman-Carroll. The accuracy of models was verified by comparing with TGA experiments. The results show that PMMA with CB has higher thermal decomposition temperature and activation energy compared with pure PMMA. The PMMA with 0.1% CB presents the highest thermal stability. The activation energy of PMMA first rises and then falls down with increasing CB content, and the maximum increment is 17.76 kJ·mol-1, which proves that adding CB improves the thermal stability of PMMA to a certain extent.

Key words:  organic polymer materials      thermal degradation kinetic model      polymethyl methacrylate      carbon black      activation energy     
Received:  13 August 2021     
ZTFLH:  TQ325.7  
Fund: National Natural Science Foundation of China(52075354)
About author:  WANG Chuanyang, Tel: 18626287911, E-mail: jyniigata@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.457     OR     https://www.cjmr.org/EN/Y2022/V36/I11/837

MaterialDensity/kg∙(m3)-1Molar specific heat capacity/J∙(kg∙K)-1Thermal conductivity /W∙(m∙K)-1Viscous flow temperature/℃
PMMA119014700.21220
Table1  Physical performances of PMMA
Fig.1  Thermal stability of PMMA/0% CB with different heating rates (a) TG curves, (b) DTG curves
Fig.2  TG curves of PMMA with different CB contents at a heating rate of 5℃/min (a) from 25 to 600℃, (b) from 350 to 390℃, (c) from 450 to 500℃, and (d) the molecular model
Fig.3  Four iso-conversional rate curves of PMMA/0% CB (a) Friedman, (b) FWO, (c) KAS, (d) Freeman-Carroll
CCB/%FriedmanFWOKAS
E/kJ·mol-1R2E/kJ·mol-1R2E/kJ·mol-1R2
0159.6080.9981166.7550.9834164.6200.9813
0.05161.4610.9927164.7890.9898162.5750.9885
0.10177.3710.9979175.7780.9994174.1240.9994
0.15169.7400.9976167.4710.9870165.3710.9853
0.20160.2120.9894158.3530.9881155.7960.9864
0.25157.2740.9945159.3490.9970156.8270.9965
Table 2  Activation energy E of PMMA with different CB contents by Friedman, FWO, and KAS methods
β/℃·min-1Freeman-Carroll
CCB/%
00.050.10.150.20.25
nR2nR2nR2nR2nR2nR2
50.910.99980.620.99881.401.00001.381.00001.111.00000.380.9978
100.920.99981.071.00001.441.00001.371.00000.580.99900.950.9996
151.131.00001.520.99981.281.00001.441.00001.910.99861.201.0000
201.530.99960.950.99981.520.99961.600.99981.500.99961.450.9998
Average value1.120.99981.040.99961.410.99991.451.00001.270.99931.000.9993
Table 3  Reaction order n of PMMA with different CB contents by Freeman-Carroll method
β/℃·min-1A×1012/min-1
CCB/%
00.050.10.150.20.25
52.88564.078887.24261.919720.88273.2088
102.88234.280288.18201.923721.21663.1756
152.75394.243394.97901.943520.18002.8766
202.77104.111282.33811.747819.16123.3272
Average value2.82324.178488.18541.883720.36013.1471
Table 4  Pre-exponential factor A of PMMA with different CB contents
Fig.4  Validation of PMMA thermal degradation model with different CB contents at a heating rate of 5℃/min. (a) PMMA/0% CB, (b) PMMA/0.05% CB, (c) PMMA/0.10% CB, (d) PMMA/0.15% CB, (e) PMMA/0.20% CB, (f) PMMA/0.25% CB
1 Chen R Y, Xu M J. Kinetic and volatile products study of micron-sized PMMA waste pyrolysis using thermogravimetry and Fourier transform infrared analysis [J]. Waste Manage., 2020, 113: 51
doi: S0956-053X(20)30279-8 pmid: 32505975
2 Achilias D S. Chemical recycling of poly(methyl methacrylate) by pyrolysis. Potential use of the liquid fraction as a raw material for the reproduction of the polymer [J]. Eur. Polym. J., 2007, 43(6): 2564
doi: 10.1016/j.eurpolymj.2007.02.044
3 Fateha T, Richard F, Rogaume T, et al. Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air [J]. J. Anal. Appl. Pyrolysis, 2016, 120: 423
doi: 10.1016/j.jaap.2016.06.014
4 Poudel J, Lee Y M, Kim H J, et al. Methyl methacrylate (MMA) and alumina recovery from waste artificial marble powder pyrolysis [J]. J. Mater. Cycles Waste Manag., 2021, 23: 214
doi: 10.1007/s10163-020-01120-4
5 Phua J L, Teh P L, Ghani S A, et al. Comparison study of carbon black (CB) used as conductive filler in epoxy and polymethylmethacrylate (PMMA) [J]. J. Polym. Eng., 2016, 36(4): 391
doi: 10.1515/polyeng-2015-0026
6 Li J, Tong L F, Fang Z P, et al. Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites [J]. Polym. Degrad. Stab., 2006, 91(9): 2046
doi: 10.1016/j.polymdegradstab.2006.02.001
7 Wang M, Li B, Wang J, et al. Preparation and properties of polysiloxane grafting multi-walled carbon nanotubes/polycarbonate nanocomposites [J]. Polym. Adv. Technol., 2010, 22(12): 1738
doi: 10.1002/pat.1665
8 Yamamoto T, Makino Y, Uematsu K. Improved mechanical properties of PMMA composites: dispersion, diffusion and surface adhesion of recycled carbon fiber fillers from CFRP with adsorbed particulate PMMA [J]. Adv. Powder Technol., 2017, 28(10): 2774
doi: 10.1016/j.apt.2017.08.003
9 Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes [J]. Adv. Mater., 2006, 18(6): 689
doi: 10.1002/adma.200501851
10 Das P, Tiwari P. Thermal degradation kinetics of plastics and model selection [J]. Thermochim. Acta, 2017, 654: 191
doi: 10.1016/j.tca.2017.06.001
11 Paran S M R, Vahabi H, Jouyandeh M, et al. Thermal decomposition kinetics of dynamically vulcanized polyamide 6-acrylonitrile butadiene rubber-halloysite nanotube nanocomposites [J]. Appl. Polym., 2019, 136(20): 47483
12 Chen S H, Xu Y Y, Wang Z, et al. Pyrolysis kinetics of glass fiber/epoxy foam sandwich panel [J]. Chin. J. Mater. Res., 2019, 33(9): 699
doi: 10.11901/1005.3093.2019.192
陈松华, 徐艳英, 王 志 等. 玻璃纤维/环氧树脂泡沫夹层板的热降解动力学 [J]. 材料研究学报, 2019, 33(9): 699
doi: 10.11901/1005.3093.2019.192
13 Xu Y Y, Zhang Y, Wang Z, et al. Study on pyrolysis kinetics of typical carbon fiber bidirectional sheet [J]. Chin. J. Mater. Res., 2017, 31(1): 57
徐艳英, 张 颖, 王 志 等. 典型碳纤维编织布的热降解动力学 [J]. 材料研究学报, 2017, 31(1): 57
14 Friedman H L. Kinetics of thermal degradation of char-forming plastic from themogravimetry. Application to phenolic plastic [J]. J. Polym. Sci., Part C: Polym. Symp., 1963, 6: 183
15 Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from themogravimetric data [J]. J. Polym. Sci., Part B: Polym. Lett., 1966, 4(5): 323
doi: 10.1002/pol.1949.120040308
16 Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature, 1964, 201(4914): 68
doi: 10.1038/201068a0
17 Bates P J, Khosravi S. Polymer degradation during contour laser transmission welding [A]. Annual Technical Conference-ANTEC [C]. Boston, 2011
18 Xu Y L, Chen B L. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis [J]. Bioresour. Technol., 2013, 146: 485
doi: 10.1016/j.biortech.2013.07.086
19 Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data [J]. Thermochim. Acta, 2011, 520(1-2): 1
doi: 10.1016/j.tca.2011.03.034
20 Li K Y, Pau D S, Zhang H P. Pyrolysis of polyurethane foam: optimized search for kinetic properties via simultaneous K-K method, genetic algorithm and elemental analysis [J]. Fire Mater., 2016, 40(6): 800
doi: 10.1002/fam.2343
21 Zabihi O, Ahmadi M, Shafei S, et al. One-step amino-functionalization of milled carbon fibre for enhancement of thermophysical properties of epoxy composites [J]. Composites Part A, 2016, 88: 243
doi: 10.1016/j.compositesa.2016.06.005
22 Yadav S K, Yoo H J, Cho J W. Click coupled graphene for fabrication of high-performance polymer nanocomposites [J]. J. Polym. Sci., Part B: Polym. Phys., 2013, 51: 39
23 Liang T, Yan C J, Zhou S, et al. Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application [J]. J. Geophys. Eng., 2017, 14(5): 1225
doi: 10.1088/1742-2140/aa6e7e
24 Jakab E, Omastová M. Thermal decomposition of polyolefin/carbon black composites [J]. J. Anal. Appl. Pyrolysis, 2005, 74: 204
doi: 10.1016/j.jaap.2005.02.001
25 Omastová M, Podhradská S, Prokeš J, et al. Thermal ageing of conducting polymeric composites [J]. Polym. Degrad. Stabil., 2003, 82(2): 251
doi: 10.1016/S0141-3910(03)00218-0
26 Liu Y J, Su Z Z, Li X H, et al. Effect of dispersion of carbon black on electrical and thermal properties of poly(ethylene terephthalate)/carbon Black composites [J]. J. Macromol. Sci., Phys., 2009, 48: 146
27 Kausar A. Emerging trends in poly(methyl methacrylate) containing carbonaceous reinforcements-carbon nanotube, carbon black, and carbon fiber [J]. J. Plast. Film Sheeting, 2020, 36(4): 409
doi: 10.1177/8756087920917177
28 Ye L, Wu Q H, Qu B J. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites [J]. Polym. Degrad. Stabil., 2009, 94(5): 751
doi: 10.1016/j.polymdegradstab.2009.02.010
29 Roy N, Sengupta R, Bhowmick A K. Modifications of carbon for polymer composites and nanocomposites [J]. Prog. Polym. Sci., 2012, 37(6): 781
doi: 10.1016/j.progpolymsci.2012.02.002
30 Phua J L, Teh P L, Ghani S A, et al. Influence of thermoplastic spacer on the mechanical, electrical, and thermal properties of carbon black filled epoxy adhesives [J]. Polym. Adv. Technol., 2017, 28(3): 345
doi: 10.1002/pat.3894
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[6] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[7] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[8] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[9] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[10] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[11] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[12] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[13] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[14] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
[15] XIONG Xiaoqin, ZHANG Hongquan, FANG Chanyu. Synthesis and Self-assembly Behavior of Amylose-chenodeoxycholic Acid Conjugates[J]. 材料研究学报, 2020, 34(8): 569-574.
No Suggested Reading articles found!