|
|
Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy |
WANG Jun1, WANG Kelu1( ), LU Shiqiang1, LI Xin1, OUYANG Delai2, QIU Qian1, GAO Xin1, ZHANG Kaiming1 |
1.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China 2.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China |
|
Cite this article:
WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy. Chinese Journal of Materials Research, 2022, 36(3): 175-182.
|
Abstract The thermal deformation behavior of TA5 Ti-alloy was investigated via Gleeble-3800 thermal simulation machine in temperature range of 850~1050℃ by strain rate within 0.001~10 s-1, while the maximum deformation of 60%; A strain compensation constitutive model in consideration of the relevant physical parameters was established, and the processing diagram was obtained according to the DMM model. The results show that: TA5 Ti-alloy is a kind of material with positive strain rate sensitivity and negative deformation temperature dependence; By taking physical parameters into account, the established strain compensation constitutive model has high prediction accuracy with a correlation coefficient R of 0.99, while the average relative error AARE is 8.95%. It was found that the main deformation mechanism in the instability zone (850~990℃, 0.05~10 s-1) was local flow, which accords well with the analysis result of processing diagram coupled with observation of the microstructure; The deformation mechanisms in the stable region (870~990℃, 0.005~0.05 s-1) are mainly dynamic recovery and dynamic recrystallization. It follows that the optimal processing parameters for thermal deformation of TA5 Ti-alloy are 870-990℃ and 0.005~0.05 s-1.
|
Received: 15 April 2021
|
|
Fund: National Natural Science Foundation of China(51761029);the Postgraduate Innovation Special Fund of Nanchang Hangkong University(YC2020026) |
About author: WANG Kelu, Tel: 13133804266, E-mail: wangkelu@163.com
|
1 |
Liu P S, Qing H B. A spherical-pore foamed titanium alloy with high porosity [J]. Chin. J. Mater. Res., 2015, 29(05): 346
|
|
刘培生, 顷淮斌, 一种具有球形孔隙的高孔率泡沫钛合金 [J]. 材料研究学报, 2015, 29(05): 346
|
2 |
Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., A, 1996, 213(1): 103
|
3 |
Zhang A F, Zhang J Z, Zhang X X Z, et al. Research progress in tissue regulation and anisotropy of high-performance titanium alloy by laser additive manufacturing [J]. Journal of Netshape Forming Engineering, 2019, 11(4): 1
|
|
张安峰, 张金智, 张晓星 等. 激光增材制造高性能钛合金的组织调控与各向异性研究进展 [J]. 精密成形工程, 2019, 11(4): 1
|
4 |
Zhou Y L, Yang Q Y, Zhang W W, et al. Hot deformation behavior and constitutive equation of TB8 titanium alloy with a lamellar structure of α phase [J]. Mater. Eng., 2021, 49(01): 75
|
|
周亚利, 杨秋月, 张文玮 等.具有层片状α相组织的TB8钛合金热变形行为及本构方程 [J]. 材料工程, 2021, 49(01): 75
|
5 |
Zhao Q, Chen Y, Xu Y, et al. Hot Deformation Behavior and Mechanism of As-cast Ti-5553 Alloy with Coarse Grains [J]. Rare Metal Mat. Eng., 2020, 49(11): 3653
|
6 |
Zhou F, Wang K L, Lu S Q, et al. High temperature flow behavior and physical constitutive model of Ti2AlNb based alloy containing rare earth [J]. T Mater Heat Treat, 2018, 39(12): 109
|
|
周 峰, 王克鲁, 鲁世强 等. 含稀土的Ti_2AlNb基合金高温流动行为及物理本构模型 [J]. 材料热处理学报, 2018, 39(12): 109
|
7 |
Xu X, Dong L M, Ba H B, et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field [J]. Nonferrous Met. Soc. China,Trans., 2016, 26(11): 2874
|
8 |
Mirzadeh H. Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions [J]. Mech. Mater., 2015, 85(6): 66
|
9 |
Mirzadeh H. A comparative study on the hot flow stress of Mg-Al-Zn magnesium alloys using a simple physically-based approach [J]. J. Magn. Alloys, 2014, 2(9): 225
|
10 |
Mirzadeh H. Constitutive description of 7075 aluminum alloy during hot deformation by apparent and physically-based approaches [J]. Journal of Materials Engineering and Performance, 2015, 24(3): 1095
|
11 |
Wang X C, OuYang D L, Lu S Q, et al. Study on constitutive relationship of TC21 titanium alloy with lamellar structure considering physical parameters [J]. J. Plast. Eng., 2020, 27(12): 191
|
|
万兴才, 欧阳德来, 鲁世强 等. 考虑物理参量的片层态TC21钛合金本构关系研究 [J]. 塑性工程学报, 2020, 27(12): 191
|
12 |
Wei H L, Liu G Q, Zhang M H. Physically based constitutive analysis to predict flow stress of medium carbon and vanadium microalloyed steels [J]. Mater. Sci. Eng. A, 2014, 602
|
13 |
He S L, Feng Y Q, Wang Y Q, et al. Effect of TA5 titanium alloy structure on the properties of forgings [J]. Acta. Metall. Sin., 2002, 38(z1): 204
|
|
何书林, 冯永琦, 王永强 等. TA5钛合金组织对锻件性能的影响 [J]. 金属学报, 2002, 38(z1): 204
|
14 |
Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng. A, 2015, 639
|
15 |
Peng Y Q, Pang Y Q, Yang Z S. Study on hot pressing flow stress of TA5 titanium alloy [J]. Rare Metal, 1994, (01): 28
|
|
彭益群, 潘雅琴, 杨昭苏. TA5钛合金热压流变应力的研究 [J]. 稀有金属, 1994(01): 28
|
16 |
Zhou X, Wang K L, Lu S Q, et al. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy [J]. J. Mater. Res. Technol., 2020, 9(3)
|
17 |
Li M Z, Bai C G, Zhang Z Q, et al. Hot deformation behavior of TC2 titanium alloy [J]. Chin. J. Mater. Res., 2020, 34(12): 892
|
|
李沐泽, 柏春光, 张志强 等. TC2钛合金的高温热变形行为 [J]. 材料研究学报, 2020, 34(12): 892
|
18 |
Wang W, Gong P H, Zhang G Z, et al. Hot deformation behavior of TC4 Ti-alloy prepared by electron beam cold hearth melting [J]. Chin. J. Mater. Res., 2020, 34(9): 665
|
|
王 伟, 宫鹏辉, 张浩泽 等. 电子束冷床熔炼TC4钛合金的热变形行为 [J]. 材料研究学报, 2020, 34(9): 665
|
19 |
Huang B Y, Li C G, Shi L K. Nonferrous Materials Manual (Volume One) [M]. Beijin: Chemical Industry Press, 2009: 520
|
|
黄伯云, 李成功, 石力开. 有色金属材料手册 (上) [M]. 北京: 化学工业出版社, 2009: 520
|
20 |
Frost H J, Ashby M F. Deformation mechanism maps: the plasticity and creep of metals and ceramics [M]. Oxford: Pergamon Press, 1982
|
21 |
Kroll S, Stolwijk N, Herzig C H. Titanium self-diffusion in the intermetallic compound γ-TiAl [J].Defect and Diffusion Forum, 1993, 95/98(6): 865
|
22 |
Li H Y, Liu Y, Hu J D, et al. Hot deformation and processing drawing of ZA27 alloy [J]. Chin. J. Nonferrous Met., 2012, 22(2): 365
|
|
李红英, 刘 洋, 胡继东 等. ZA27合金的热变形及加工图 [J]. 中国有色金属学报, 2012, 22(2): 365
|
23 |
Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Trans., A, 1984, 15(10): 1883
|
24 |
Liu J J, Wang K L, LU S Q, et al. Hot deformation behavior and processing map of Zr-4 alloy [J]. Journal of Nuclear Materials, 2020, 531: 151993
|
25 |
Ren S J, Wang K L, Lu S Q, et al. Physical constitutive model and processing diagram of TiAl alloy [J]. Chin. J. Nonferrous Met., 2020, 30(6): 1289
|
|
任书杰, 王克鲁, 鲁世强 等. TiAl合金的物理本构模型与加工图 [J]. 中国有色金属学报, 2020, 30(6): 1289
|
26 |
Ding Z, Fan J, Zhang Z X, et al. Microstructure and texture variations in high temperature titanium alloy Ti65 sheets with different rolling modes and heat treatments [J]. Mater., 2020; 13(11): 2466
|
27 |
Seshacharyulu T, Medeiros S C, Frazier W G, et al. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure [J]. Mater. Sci. Eng. A, 2002, 325(1-2): 112
|
28 |
Yong N, Hou H L, Li M Q, et al. High temperature deformation behavior of a near alpha Ti600 titanium alloy [J]. Mater. Sci. Eng. A, 2008, 492: 24
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|