Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (3): 175-182    DOI: 10.11901/1005.3093.2021.241
ARTICLES Current Issue | Archive | Adv Search |
Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy
WANG Jun1, WANG Kelu1(), LU Shiqiang1, LI Xin1, OUYANG Delai2, QIU Qian1, GAO Xin1, ZHANG Kaiming1
1.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy. Chinese Journal of Materials Research, 2022, 36(3): 175-182.

Download:  HTML  PDF(10254KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal deformation behavior of TA5 Ti-alloy was investigated via Gleeble-3800 thermal simulation machine in temperature range of 850~1050℃ by strain rate within 0.001~10 s-1, while the maximum deformation of 60%; A strain compensation constitutive model in consideration of the relevant physical parameters was established, and the processing diagram was obtained according to the DMM model. The results show that: TA5 Ti-alloy is a kind of material with positive strain rate sensitivity and negative deformation temperature dependence; By taking physical parameters into account, the established strain compensation constitutive model has high prediction accuracy with a correlation coefficient R of 0.99, while the average relative error AARE is 8.95%. It was found that the main deformation mechanism in the instability zone (850~990℃, 0.05~10 s-1) was local flow, which accords well with the analysis result of processing diagram coupled with observation of the microstructure; The deformation mechanisms in the stable region (870~990℃, 0.005~0.05 s-1) are mainly dynamic recovery and dynamic recrystallization. It follows that the optimal processing parameters for thermal deformation of TA5 Ti-alloy are 870-990℃ and 0.005~0.05 s-1.

Key words:  metal material      TA5 titanium alloy      high temperature deformation behavior      physics constitutive      processing map      optimal process parameter     
Received:  15 April 2021     
ZTFLH:  TG146.23  
Fund: National Natural Science Foundation of China(51761029);the Postgraduate Innovation Special Fund of Nanchang Hangkong University(YC2020026)
About author:  WANG Kelu, Tel: 13133804266, E-mail: wangkelu@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.241     OR     https://www.cjmr.org/EN/Y2022/V36/I3/175

Fig.1  Initial microstructure of TA5 alloy
Fig.2  Flow stress curve of TA5 titanium alloy under different deformation conditions ε˙=0.01 s-1; (b) T=850℃
Fig.3  Peak stress of TA5 titanium alloy under different deformation conditions

D0/

m2·s-1

Qsd/

J·mol-1

G0/

MPa

E0/

GPa

Tm/

K

TmG0dGdT
1.5×10-42.91×1054.36×1041261933-1.2
Table 1  Correlation material parameters of the alloy
  
Fig.4  Relationships among αn、lnB and ε by 6th polynomial fit at the deformation temperature range of 850≤T≤950℃ (a) α-ε; (b) n-ε; (c) lnB-ε
Fig.5  Relationships among α˙n˙lnB? and ε by 7th polynomial fit at the deformation temperature range of 950<T≤1050℃ (a) α˙-ε; (b) n˙-ε; (c) lnB?-ε
Fig.6  Comparison of predicted flow stress and experimental values of TA5 titanium alloy at different deformation temperatures (a) T=850℃; (b) T=950℃; (c) T=1000℃
Fig.7  Processing diagram of TA5 titanium alloy under different strains 0.3 (a)、0.5 (b)、0.7 (c) 0.9 (d)
Fig.8  Microstructure of stabilized zone of TA5 titanium alloy (a) 900, 0.01 s-1; (b) 950, 0.01 s-1
Fig.9  Microstructure of instability zone of TA5 titanium alloy (a) 850℃, 10 s-1; (b) 900℃, 1 s-1; (c) 950℃, 10 s-1
1 Liu P S, Qing H B. A spherical-pore foamed titanium alloy with high porosity [J]. Chin. J. Mater. Res., 2015, 29(05): 346
刘培生, 顷淮斌, 一种具有球形孔隙的高孔率泡沫钛合金 [J]. 材料研究学报, 2015, 29(05): 346
2 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., A, 1996, 213(1): 103
3 Zhang A F, Zhang J Z, Zhang X X Z, et al. Research progress in tissue regulation and anisotropy of high-performance titanium alloy by laser additive manufacturing [J]. Journal of Netshape Forming Engineering, 2019, 11(4): 1
张安峰, 张金智, 张晓星 等. 激光增材制造高性能钛合金的组织调控与各向异性研究进展 [J]. 精密成形工程, 2019, 11(4): 1
4 Zhou Y L, Yang Q Y, Zhang W W, et al. Hot deformation behavior and constitutive equation of TB8 titanium alloy with a lamellar structure of α phase [J]. Mater. Eng., 2021, 49(01): 75
周亚利, 杨秋月, 张文玮 等.具有层片状α相组织的TB8钛合金热变形行为及本构方程 [J]. 材料工程, 2021, 49(01): 75
5 Zhao Q, Chen Y, Xu Y, et al. Hot Deformation Behavior and Mechanism of As-cast Ti-5553 Alloy with Coarse Grains [J]. Rare Metal Mat. Eng., 2020, 49(11): 3653
6 Zhou F, Wang K L, Lu S Q, et al. High temperature flow behavior and physical constitutive model of Ti2AlNb based alloy containing rare earth [J]. T Mater Heat Treat, 2018, 39(12): 109
周 峰, 王克鲁, 鲁世强 等. 含稀土的Ti_2AlNb基合金高温流动行为及物理本构模型 [J]. 材料热处理学报, 2018, 39(12): 109
7 Xu X, Dong L M, Ba H B, et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field [J]. Nonferrous Met. Soc. China,Trans., 2016, 26(11): 2874
8 Mirzadeh H. Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions [J]. Mech. Mater., 2015, 85(6): 66
9 Mirzadeh H. A comparative study on the hot flow stress of Mg-Al-Zn magnesium alloys using a simple physically-based approach [J]. J. Magn. Alloys, 2014, 2(9): 225
10 Mirzadeh H. Constitutive description of 7075 aluminum alloy during hot deformation by apparent and physically-based approaches [J]. Journal of Materials Engineering and Performance, 2015, 24(3): 1095
11 Wang X C, OuYang D L, Lu S Q, et al. Study on constitutive relationship of TC21 titanium alloy with lamellar structure considering physical parameters [J]. J. Plast. Eng., 2020, 27(12): 191
万兴才, 欧阳德来, 鲁世强 等. 考虑物理参量的片层态TC21钛合金本构关系研究 [J]. 塑性工程学报, 2020, 27(12): 191
12 Wei H L, Liu G Q, Zhang M H. Physically based constitutive analysis to predict flow stress of medium carbon and vanadium microalloyed steels [J]. Mater. Sci. Eng. A, 2014, 602
13 He S L, Feng Y Q, Wang Y Q, et al. Effect of TA5 titanium alloy structure on the properties of forgings [J]. Acta. Metall. Sin., 2002, 38(z1): 204
何书林, 冯永琦, 王永强 等. TA5钛合金组织对锻件性能的影响 [J]. 金属学报, 2002, 38(z1): 204
14 Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng. A, 2015, 639
15 Peng Y Q, Pang Y Q, Yang Z S. Study on hot pressing flow stress of TA5 titanium alloy [J]. Rare Metal, 1994, (01): 28
彭益群, 潘雅琴, 杨昭苏. TA5钛合金热压流变应力的研究 [J]. 稀有金属, 1994(01): 28
16 Zhou X, Wang K L, Lu S Q, et al. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy [J]. J. Mater. Res. Technol., 2020, 9(3)
17 Li M Z, Bai C G, Zhang Z Q, et al. Hot deformation behavior of TC2 titanium alloy [J]. Chin. J. Mater. Res., 2020, 34(12): 892
李沐泽, 柏春光, 张志强 等. TC2钛合金的高温热变形行为 [J]. 材料研究学报, 2020, 34(12): 892
18 Wang W, Gong P H, Zhang G Z, et al. Hot deformation behavior of TC4 Ti-alloy prepared by electron beam cold hearth melting [J]. Chin. J. Mater. Res., 2020, 34(9): 665
王 伟, 宫鹏辉, 张浩泽 等. 电子束冷床熔炼TC4钛合金的热变形行为 [J]. 材料研究学报, 2020, 34(9): 665
19 Huang B Y, Li C G, Shi L K. Nonferrous Materials Manual (Volume One) [M]. Beijin: Chemical Industry Press, 2009: 520
黄伯云, 李成功, 石力开. 有色金属材料手册 (上) [M]. 北京: 化学工业出版社, 2009: 520
20 Frost H J, Ashby M F. Deformation mechanism maps: the plasticity and creep of metals and ceramics [M]. Oxford: Pergamon Press, 1982
21 Kroll S, Stolwijk N, Herzig C H. Titanium self-diffusion in the intermetallic compound γ-TiAl [J].Defect and Diffusion Forum, 1993, 95/98(6): 865
22 Li H Y, Liu Y, Hu J D, et al. Hot deformation and processing drawing of ZA27 alloy [J]. Chin. J. Nonferrous Met., 2012, 22(2): 365
李红英, 刘 洋, 胡继东 等. ZA27合金的热变形及加工图 [J]. 中国有色金属学报, 2012, 22(2): 365
23 Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Trans., A, 1984, 15(10): 1883
24 Liu J J, Wang K L, LU S Q, et al. Hot deformation behavior and processing map of Zr-4 alloy [J]. Journal of Nuclear Materials, 2020, 531: 151993
25 Ren S J, Wang K L, Lu S Q, et al. Physical constitutive model and processing diagram of TiAl alloy [J]. Chin. J. Nonferrous Met., 2020, 30(6): 1289
任书杰, 王克鲁, 鲁世强 等. TiAl合金的物理本构模型与加工图 [J]. 中国有色金属学报, 2020, 30(6): 1289
26 Ding Z, Fan J, Zhang Z X, et al. Microstructure and texture variations in high temperature titanium alloy Ti65 sheets with different rolling modes and heat treatments [J]. Mater., 2020; 13(11): 2466
27 Seshacharyulu T, Medeiros S C, Frazier W G, et al. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure [J]. Mater. Sci. Eng. A, 2002, 325(1-2): 112
28 Yong N, Hou H L, Li M Q, et al. High temperature deformation behavior of a near alpha Ti600 titanium alloy [J]. Mater. Sci. Eng. A, 2008, 492: 24
[1] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[3] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[4] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[5] YANG Bing, LIU Chunzhong, GAO Enzhi, SUN Wei, LIU Ting, ZHANG Hongning, ZHU Mingwei, LU Tianni. Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures[J]. 材料研究学报, 2022, 36(10): 730-738.
[6] YU Jiaying, YANG Xixiang, ZHAN Desong, YANG Ke, REN Ling, WANG Jingren, XU Jiawei. Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy[J]. 材料研究学报, 2021, 35(11): 873-880.
[7] YANG Dongya, LI Weitao, WANG Honggang, GAO Gui, CHENG Shengsheng, REN Junfang, TIAN Song. Effect of Counterpart Ring Surface Roughness on Wear Process of Bismuth Bronze[J]. 材料研究学报, 2021, 35(10): 732-740.
[8] WANG Wei, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Meng, ZHANG Xiaofeng, WANG Kuaishe. Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting[J]. 材料研究学报, 2020, 34(9): 665-673.
[9] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[10] LI Muze, BAI Chunguang, ZHANG Zhiqiang, ZHAO Jian, XU Dongsheng, WANG Yanfeng. Hot Deformation Behavior of TC2 Titanium Alloy[J]. 材料研究学报, 2020, 34(12): 892-904.
[11] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
[12] Xuemeng WANG,Siqian ZHANG,Ziyao YUAN,Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. 材料研究学报, 2017, 31(6): 409-414.
[13] LI Yuhai, ZHANG Baibing, DONG Xuguang, WANG Shuai. Comparative Study on Corrosion Resistance of Micro Arc Oxidation Ceramic Coatings on Mg-Mn-RE Alloy[J]. 材料研究学报, 2016, 30(3): 235-240.
[14] LI Yingfei, TIAN Na, FAN Xiaodong, YOU Caiyin. Influence of Dy2O3 Doping on Coercivity of Mechanically Milled Nd2Fe14B/α-Fe Composite Magnets[J]. 材料研究学报, 2016, 30(2): 95-98.
[15] Yongwen JIANG,Tao NIU,Chenggang AN,Xinlang WU,Caixia ZHANG,Xiaoli DAI. Strain Aging Behavior of X70 Pipeline Steel[J]. 材料研究学报, 2016, 30(10): 767-772.
No Suggested Reading articles found!