|
|
Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries |
XIAO Lan, YU Wenhua, HUANG Hao( ), WU Aimin, JIN Xiaozhe |
Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
XIAO Lan, YU Wenhua, HUANG Hao, WU Aimin, JIN Xiaozhe. Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries. Chinese Journal of Materials Research, 2022, 36(11): 821-828.
|
Abstract TiH1.924 nanometer powder was prepared by DC arc method, and then taking TiH1.924 as precursor,TiS3 nanometer flakes with laminar structure was prepared by solid-gas reaction. The structure and performance of TiS3 nanoflakes as anode material for lithium-ion batteries were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy and performance testing. The performance of TiS3 nanoflakes as anode for lithium-ion battery was also investigated. The results show that the TiS3 nanoflake has a special nano-laminar structure, and its thickness is about 35 nm. The lithium-ion battery using TiS3 nanoflakes as anode material has good electrochemical performance with the remained capacity of 430 mAh/g after 300 cycles at a current density of 500 mA/g. When the current density is 5 A/g the discharge capacity is 240 mAh/g and when the current density is restored to 100 mA/g, the discharge capacity is stable at 500 mAh/g. The good magnification properties of TiS3 are due to its special nano-flake structure. The mono-laminar structure can better adapt to the volume change caused by the strain in the process of multiple discharge/charging at high current density, so as to prevent the electrode from crushing.
|
Received: 30 April 2021
|
|
Fund: Fundamental Research Funds for the Central Universities(DUT20LAB123);Natural Science Foundation of Jiangsu Province(BK20191167) |
About author: HUANG Hao, Tel: 13700111620, E-mail: huanghao@dlut.edu.cn
|
1 |
Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithium batteries [J]. Mater. Res. Bull., 2008
|
2 |
Whittingham M S. Lithium batteries and cathode materials [J]. Chem. Rev., 2004, 35(50): 4271
|
3 |
Luo F, Chu G, Huang J, et al. Fundamental scientific aspects of lithium batteries (Ⅷ)——Anode electrode materials [J]. Energy Storage Science and Technology, 2014, 02(2): 146
|
|
罗 飞, 褚 赓, 黄 杰 等. 锂离子电池基础科学问题(Ⅷ)——负极材料 [J]. 储能科学与技术, 2014, 02(2): 146
|
4 |
Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage [J]. Nat. Chem., 2015, 7(1): 19
doi: 10.1038/nchem.2085
pmid: 25515886
|
5 |
Dunn B, Kamath H, Tarascon J M. Electrical Energy Storage for the Grid: A Battery of Choices [J]. Science, 2011, 334(6058): 928
doi: 10.1126/science.1212741
pmid: 22096188
|
6 |
Yayathi S, Walker W, Doughty D, et al. Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications [J]. J. Power Sources, 2016, 329(oct.15) : 197
|
7 |
Aurbach D, Markovsky B, Weissman I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J]. Electrochim. Acta, 1999, 45(1-2): 67
doi: 10.1016/S0013-4686(99)00194-2
|
8 |
Martin, Winter, Jürgen, et al. Insertion Electrode Materials for Rechargeable Lithium Batteries [J]. Adv. Mater., 1998, 10(10): 725
doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
|
9 |
Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nat. Chem., 2013, 5(4): 263
doi: 10.1038/nchem.1589
pmid: 23511414
|
10 |
Luo Q, Huang H. Preparation and electrochemical properties of TiS2 nanoparticle porous anode materials [J]. J Funct. Mater., 2020, 51(06): 06022
|
|
罗 倩, 黄 昊. TiS2纳米片多孔负极材料的制备及其电化学性能 [J]. 功能材料, 2020, 51(06): 06022
|
11 |
Zeng Z, Tan C, Xiao H, et al. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction [J]. Energy Environ. Sci., 2014, 7(2): 797
doi: 10.1039/C3EE42620C
|
12 |
Pan S, Yin Z, Cheng Q, et al. Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium-sulfur battery [J]. J Alloys Compd., 2020, 832: 154947
doi: 10.1016/j.jallcom.2020.154947
|
13 |
Zong J, Wang F, Zhao J, et al. Rational design of strong chemical coupling carbon coated N-doped C@MoS2@C nanotubes for high-performance lithium storage [J]. J Alloys Compd., 2020, 832: 154947
doi: 10.1016/j.jallcom.2020.154947
|
14 |
Luo, B, Fang, et al. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage [J]. Energy Environ. Sci., 2012, 5: 5226
doi: 10.1039/C1EE02800F
|
15 |
Xia J, Yuan Y, Yan H, et al. Electrospun SnSe/C nanofibers as binder-free anode for lithium-ion and sodium-ion batteries [J]. J. Power Sources, 2019, 449: 227559
doi: 10.1016/j.jpowsour.2019.227559
|
16 |
Peng L, Zhu Y, Chen D, et al. Two-Dimensional Materials for Beyond-Lithium-Ion Batteries [J]. Adv Energy Mater., 2016, 6,1600025
doi: 10.1002/aenm.201600025
|
17 |
Tanibata N, Matsuyama T, Hayashi A, et al. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity [J]. J. Power Sources, 2015, 275: 284
doi: 10.1016/j.jpowsour.2014.10.193
|
18 |
Hawkins C G, Whittaker-Brooks L. Controlling Sulfur Vacancies in TiS2-x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications [J]. Acs Appl. Nano Mater., 2018, 1(2): 851
doi: 10.1021/acsanm.7b00266
|
19 |
Wang L J. Study on photoelectric characteristics of narrow-band and wide-band oxide radial heterostructures [D]. Harbin: Harbin Engineering University, 2009
|
|
王丽娇. 窄带宽带氧化物径向异质纳米结构光电特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2009
|
20 |
Wu J, Wang D, Liu H, et al. An ab initio study of TiS3: a promising electrode material for rechargeable Li and Na ion batteries [J]. Rsc Adv., 2015, 5(28): 21455
doi: 10.1039/C4RA15055D
|
21 |
Ji L, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy Environ. Sci., 2011, 4(8): 2682
doi: 10.1039/c0ee00699h
|
22 |
Aric A S, Bruce P, Scrosati B, et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices [J]. Nat. Mater., 2005, 4(5): 366
pmid: 15867920
|
23 |
Cao M, Wang X, Zhang M, et al. Electromagnetic Response and Energy Conversion for Functions and Devices in Low‐Dimensional Materials [J]. Adv. Funct. Mater, 2019, 29(25): 1
|
24 |
Han C, Cao W Q, Cao M S. Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries [J]. Inorg. Chem. Front., 2020, 7: 4101
doi: 10.1039/D0QI00892C
|
25 |
Cao W, Wang W, Shi H, et al. Hierarchical three-dimensional flower-like Co3O4 archi- tectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J]. Nano, 2018, 011(003): 1437
|
26 |
Island, J O, Barawi M, Biele R, et al. TiS3 Transistors with Tailored Morphology and Electrical Properties [J]. Adv. Mater., 2015, 27(16): 2595
doi: 10.1002/adma.201405632
|
27 |
Tanibata N, Matsuyama T, Hayashi A, et al. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity [J]. J Power Sources, 2015, 275: 284
doi: 10.1016/j.jpowsour.2014.10.193
|
28 |
Tao Y R, Xiong W W, Wu X C. Titanium Tri- and di-Sulfide Nanobelts/Graphene Composites for Rechargeable Lithium Battery Cathodes and Enhancement of Reversible Capacities [J]. Sci. Adv. Mater., 2014, 6(9): 1965
doi: 10.1166/sam.2014.1964
|
29 |
Sun G, Wei Z, Chen N, et al. Quasi-1D TiS3: A potential anode for high-performance sodium-ion storage [J]. Chem. Eng. J., 2020, 388: 1
|
30 |
Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behaviors of MoP banoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Research, 2019, 3(1): 65
|
|
肖雅丹, 靳晓哲, 黄 昊 等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33(1): 65
doi: 10.11901/1005.3093.2017.793
|
31 |
Wu K, Torun E, Sahin H, et al. Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3 [J]. Nat. Commun., 2016, 7: 12952.
doi: 10.1038/ncomms12952
pmid: 27653671
|
32 |
Grayfer ED, Pazhetnov E M, Kozlova M N, et al. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries [J]. Chem Sus Chem, 2017, 10(24): 4805
doi: 10.1002/cssc.201701709
|
33 |
Yin Y X, Xin S, Guo Y G, et al. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects [J]. Angew. Chem., 2013, 52(50): 13186
doi: 10.1002/anie.201304762
|
34 |
Meddings N, Heinrich M, Overney F, et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review [J]. J. Power Sources, 2020, 480: 228742
doi: 10.1016/j.jpowsour.2020.228742
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|