Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 821-828    DOI: 10.11901/1005.3093.2021.281
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries
XIAO Lan, YU Wenhua, HUANG Hao(), WU Aimin, JIN Xiaozhe
Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

XIAO Lan, YU Wenhua, HUANG Hao, WU Aimin, JIN Xiaozhe. Preparation and Performance of TiS3 Nanoflakes as Anode Material for Lithium-ion Batteries. Chinese Journal of Materials Research, 2022, 36(11): 821-828.

Download:  HTML  PDF(7534KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiH1.924 nanometer powder was prepared by DC arc method, and then taking TiH1.924 as precursor,TiS3 nanometer flakes with laminar structure was prepared by solid-gas reaction. The structure and performance of TiS3 nanoflakes as anode material for lithium-ion batteries were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy and performance testing. The performance of TiS3 nanoflakes as anode for lithium-ion battery was also investigated. The results show that the TiS3 nanoflake has a special nano-laminar structure, and its thickness is about 35 nm. The lithium-ion battery using TiS3 nanoflakes as anode material has good electrochemical performance with the remained capacity of 430 mAh/g after 300 cycles at a current density of 500 mA/g. When the current density is 5 A/g the discharge capacity is 240 mAh/g and when the current density is restored to 100 mA/g, the discharge capacity is stable at 500 mAh/g. The good magnification properties of TiS3 are due to its special nano-flake structure. The mono-laminar structure can better adapt to the volume change caused by the strain in the process of multiple discharge/charging at high current density, so as to prevent the electrode from crushing.

Key words:  inorganic non-metallic materials      TiS3      DC arc discharge      lithium-ion battery      cathode      nano materials     
Received:  30 April 2021     
ZTFLH:  O646  
Fund: Fundamental Research Funds for the Central Universities(DUT20LAB123);Natural Science Foundation of Jiangsu Province(BK20191167)
About author:  HUANG Hao, Tel: 13700111620, E-mail: huanghao@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.281     OR     https://www.cjmr.org/EN/Y2022/V36/I11/821

Fig.1  Crystalline structure of TiS3
Fig.2  XRD patterns of TiH1.924 (a) and TiS3 (b)
Fig.3  Raman spectra of TiS3 nanosheets
Fig.4  SEM (a) and TEM images (c) of TiH1.924 and SEM (b) and TEM images of TiS3 (d, e)
Fig.5  TEM (a) andAFM images (b) of TiS3 andthe thickness of TiS3 nanosheets (c~d)
Fig.6  Cycling performance of TiS3 nano powder at 500 mA/g (a) and rate performance (b) of TiS3 nanosheet
Fig.7  SEM image of TiS3 electrode (a) before cycle, (b) after 500 cycles
Fig.8  Charge/discharge voltage-specific capacity curves of TiS3 nano powder (a) and cyclic voltammograms of TiS3 nano powder (b)
Fig.9  Ex situ XRD pattern from 5° to 55° of TiS3 electrodes at different discharge-charge states
Fig.10  EIS curves of the TiS3 electrode after different number of cycles (a) before cycle、1st cycle、5th cycle, (b) before cycle、10th cycle、20th cycle、50th cycle
Fig.11  Equivalent analog circuits of TiS3 electrode before cycle (a) and after cycle (b)
SampleCPE1CPE2R2R3σW/Ω·cm2·s-0.5D0/cm2·s-1IF/mA·cm-2
Initial3.561×10-5-62.63-28.9866.366×10-112.665×10-4
1st cycle5.355×10-41.371×10-411.9828.1640.9873.184×10-111.393×10-3
5th cycle2.766×10-41.056×10-723.640.80931.2755.468×10-117.061×10-4
10th cycle1.217×10-41.969×10-619.051.59524.7128.759×10-118.763×10-4
20th cycle1.476×10-41.413×10-620.841.600

41.579

3.094×10-118.010×10-4
50th cycle1.333×10-46.508×10-727.511.57248.8902.237×10-116.149×10-4
Table 1  Equivalent circuit parameters of TiS3 nanoparticles electrode
1 Patil A, Patil V, Shin D W, et al. Issue and challenges facing rechargeable thin film lithium batteries [J]. Mater. Res. Bull., 2008
2 Whittingham M S. Lithium batteries and cathode materials [J]. Chem. Rev., 2004, 35(50): 4271
3 Luo F, Chu G, Huang J, et al. Fundamental scientific aspects of lithium batteries (Ⅷ)——Anode electrode materials [J]. Energy Storage Science and Technology, 2014, 02(2): 146
罗 飞, 褚 赓, 黄 杰 等. 锂离子电池基础科学问题(Ⅷ)——负极材料 [J]. 储能科学与技术, 2014, 02(2): 146
4 Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage [J]. Nat. Chem., 2015, 7(1): 19
doi: 10.1038/nchem.2085 pmid: 25515886
5 Dunn B, Kamath H, Tarascon J M. Electrical Energy Storage for the Grid: A Battery of Choices [J]. Science, 2011, 334(6058): 928
doi: 10.1126/science.1212741 pmid: 22096188
6 Yayathi S, Walker W, Doughty D, et al. Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications [J]. J. Power Sources, 2016, 329(oct.15) : 197
7 Aurbach D, Markovsky B, Weissman I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J]. Electrochim. Acta, 1999, 45(1-2): 67
doi: 10.1016/S0013-4686(99)00194-2
8 Martin, Winter, Jürgen, et al. Insertion Electrode Materials for Rechargeable Lithium Batteries [J]. Adv. Mater., 1998, 10(10): 725
doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
9 Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nat. Chem., 2013, 5(4): 263
doi: 10.1038/nchem.1589 pmid: 23511414
10 Luo Q, Huang H. Preparation and electrochemical properties of TiS2 nanoparticle porous anode materials [J]. J Funct. Mater., 2020, 51(06): 06022
罗 倩, 黄 昊. TiS2纳米片多孔负极材料的制备及其电化学性能 [J]. 功能材料, 2020, 51(06): 06022
11 Zeng Z, Tan C, Xiao H, et al. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction [J]. Energy Environ. Sci., 2014, 7(2): 797
doi: 10.1039/C3EE42620C
12 Pan S, Yin Z, Cheng Q, et al. Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium-sulfur battery [J]. J Alloys Compd., 2020, 832: 154947
doi: 10.1016/j.jallcom.2020.154947
13 Zong J, Wang F, Zhao J, et al. Rational design of strong chemical coupling carbon coated N-doped C@MoS2@C nanotubes for high-performance lithium storage [J]. J Alloys Compd., 2020, 832: 154947
doi: 10.1016/j.jallcom.2020.154947
14 Luo, B, Fang, et al. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage [J]. Energy Environ. Sci., 2012, 5: 5226
doi: 10.1039/C1EE02800F
15 Xia J, Yuan Y, Yan H, et al. Electrospun SnSe/C nanofibers as binder-free anode for lithium-ion and sodium-ion batteries [J]. J. Power Sources, 2019, 449: 227559
doi: 10.1016/j.jpowsour.2019.227559
16 Peng L, Zhu Y, Chen D, et al. Two-Dimensional Materials for Beyond-Lithium-Ion Batteries [J]. Adv Energy Mater., 2016, 6,1600025
doi: 10.1002/aenm.201600025
17 Tanibata N, Matsuyama T, Hayashi A, et al. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity [J]. J. Power Sources, 2015, 275: 284
doi: 10.1016/j.jpowsour.2014.10.193
18 Hawkins C G, Whittaker-Brooks L. Controlling Sulfur Vacancies in TiS2-x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications [J]. Acs Appl. Nano Mater., 2018, 1(2): 851
doi: 10.1021/acsanm.7b00266
19 Wang L J. Study on photoelectric characteristics of narrow-band and wide-band oxide radial heterostructures [D]. Harbin: Harbin Engineering University, 2009
王丽娇. 窄带宽带氧化物径向异质纳米结构光电特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2009
20 Wu J, Wang D, Liu H, et al. An ab initio study of TiS3: a promising electrode material for rechargeable Li and Na ion batteries [J]. Rsc Adv., 2015, 5(28): 21455
doi: 10.1039/C4RA15055D
21 Ji L, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy Environ. Sci., 2011, 4(8): 2682
doi: 10.1039/c0ee00699h
22 Aric A S, Bruce P, Scrosati B, et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices [J]. Nat. Mater., 2005, 4(5): 366
pmid: 15867920
23 Cao M, Wang X, Zhang M, et al. Electromagnetic Response and Energy Conversion for Functions and Devices in Low‐Dimensional Materials [J]. Adv. Funct. Mater, 2019, 29(25): 1
24 Han C, Cao W Q, Cao M S. Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries [J]. Inorg. Chem. Front., 2020, 7: 4101
doi: 10.1039/D0QI00892C
25 Cao W, Wang W, Shi H, et al. Hierarchical three-dimensional flower-like Co3O4 archi- tectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J]. Nano, 2018, 011(003): 1437
26 Island, J O, Barawi M, Biele R, et al. TiS3 Transistors with Tailored Morphology and Electrical Properties [J]. Adv. Mater., 2015, 27(16): 2595
doi: 10.1002/adma.201405632
27 Tanibata N, Matsuyama T, Hayashi A, et al. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity [J]. J Power Sources, 2015, 275: 284
doi: 10.1016/j.jpowsour.2014.10.193
28 Tao Y R, Xiong W W, Wu X C. Titanium Tri- and di-Sulfide Nanobelts/Graphene Composites for Rechargeable Lithium Battery Cathodes and Enhancement of Reversible Capacities [J]. Sci. Adv. Mater., 2014, 6(9): 1965
doi: 10.1166/sam.2014.1964
29 Sun G, Wei Z, Chen N, et al. Quasi-1D TiS3: A potential anode for high-performance sodium-ion storage [J]. Chem. Eng. J., 2020, 388: 1
30 Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behaviors of MoP banoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Research, 2019, 3(1): 65
肖雅丹, 靳晓哲, 黄 昊 等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33(1): 65
doi: 10.11901/1005.3093.2017.793
31 Wu K, Torun E, Sahin H, et al. Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3 [J]. Nat. Commun., 2016, 7: 12952.
doi: 10.1038/ncomms12952 pmid: 27653671
32 Grayfer ED, Pazhetnov E M, Kozlova M N, et al. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries [J]. Chem Sus Chem, 2017, 10(24): 4805
doi: 10.1002/cssc.201701709
33 Yin Y X, Xin S, Guo Y G, et al. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects [J]. Angew. Chem., 2013, 52(50): 13186
doi: 10.1002/anie.201304762
34 Meddings N, Heinrich M, Overney F, et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review [J]. J. Power Sources, 2020, 480: 228742
doi: 10.1016/j.jpowsour.2020.228742
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!