Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 801-810    DOI: 10.11901/1005.3093.2020.109
ARTICLES Current Issue | Archive | Adv Search |
Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements
ZHOU Haitao(), WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
Cite this article: 

ZHOU Haitao, WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge. Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements. Chinese Journal of Materials Research, 2020, 34(11): 801-810.

Download:  HTML  PDF(9769KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium matrix composites with extremely strong design flexibility in properties are expected to meet the needs of low-density, high-strength and high stiffness materials in fields such as aerospace, military, and electronic packaging etc. However, there are still many problems needed to be solved for the application, especially the uniform dispersibility of reinforcements and the interface of reinforcement/matrix. In this article, the composition of magnesium matrix composites and the respective functions were introduced firstly. Then, the dispersion technology for reinforcements and the optimization technology for the interface of reinforcement/substrate were also discussed in detail. At last, the new ideas and developing trends were forecasted especially in terms of the limitations of mechanical properties for the magnesium matrix composites at the present.

Key words:  review      composite      magnesium matrix      reinforcement      dispersion      interface      properties     
Received:  13 April 2020     
ZTFLH:  TB331  
Fund: Joint Fund for Equipment Preresearch of Aerospace Science and Technology(6141B061304);National Nature Science Foundation of China(U2037601);Independent Research Program of the Eighth Aerospace Academy(ZY2019-58)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.109     OR     https://www.cjmr.org/EN/Y2020/V34/I11/801

Fig.1  Schematic of the preparation of magnesium matrix composites by powder metallurgy
Fig.2  Schematic diagram of graphene reinforced magnesium matrix composites
Fig.3  Microstructure of SiC nanoparticles reinforced magnesium matrix composites (a) SEM images of the uniform distribution and dispersion of SiC nanoparticles in magnesium matrix, (b) HRTEM image showing a characteristic interface between a SiC nanoparticle and magnesium matrix
Fig.4  The effect of coating on the interface of Cf/Mg composite. (a) TiO2 coating Cf/Mg-2% Al composite material, (b) TEM morphology of TiO2 coating Cf/Mg composite interface
Fig.5  Sketch diagrams of the interface bonding structures of AZ91-MgO@CNTs composite (a) CNTs/MgO, (b) MgO/α-Mg and (c) CNTs/α-Mg interface
MaterialsUTS/MPaYS/MPaElongation/%
AT81/0.5%(vol.%)SiCp[18]393255
AZ31/1%(vol.%)SiCp[47]2178111.5
AZ31/10%(micro)+4%(submicro+1%(nano)(vol.%)SiCp[48]3783052.3
AZ31/12%(micro)+2%(submicro)+1%(nano)(vol.%)SiCp[48]3562802.8
AZ31/3%(wt.%)GNPs[49]299±6.2195±4.512.5±4.3
ZK60/0.05%(wt.%)GNPs[50]336±4256±413±1.2
ZK60/0.1%(wt.%)GNPs[50]343±3.8383±3.517±2.0
AZ31/3%(wt.%)GNPs[16]335±6.6232±4.910.7±2.1
AZ91/0.1%(wt.%)GO[51]283±5.5232±4.08.7±0.1
AZ91/0.5%(wt.%)GO[51]355±4.5312±4.511.3±0.2
AZ31/0.1%(vol.%)CNTs[53]32227016
AZ91D/0.5%(vol.%)CNTs[54]357±9266±413.1
AZ91D/1%(vol.%)CNTs[54]389±8278±812.8
AZ91D/3%(wt.%)CNTs[42]301±4.5250±3.89.4±0.1
AZ91D/3%(wt.%)MgO@CNTs[42]331±5.0284±4.68.6±0.1
Table 1  Mechanical properties of carbon-containing reinforcements reinforced magnesium matrix composites
Fig.6  Process flow diagram of ZW31+AZ91/SiCp laminate fabricated by co-extrusion and hot rolling
Fig.7  Schematic diagram of multiphase hybrid enhancement (a) Schematic diagram of self-assembly of CNTs and graphene[64], (b) Three-dimensional columnar graphene / carbon nanotube reinforced structure[65]
Fig.8  Formation and 3D architecture of Mg-NiTi interpenetrating-phase composite
1 Song J F, She J, Chen D L, et al. Review latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magn. Alloys., 2020, 8(1): 1
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magn. Alloys., 2019, 7(3): 536
3 Alaneme K K, Okotete E A. Enhancing plastic deformability of Mg and its alloys-A review of traditional and nascent developments [J]. J. Magn. Alloys., 2017, 5(4): 460
4 Wang X J, Hu X S, Liu W Q, et al. Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites [J]. Mater. Sci. Eng. A., 2017, 682: 491
5 Haghshenas M. Mechanical characteristics of biodegradable magnesium matrix composites: A review [J]. J. Magn. Alloys., 2017, 5(2): 189
6 You S H, Huang Y D, Ulrich K K, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magn. Alloys., 2017, 5(3): 239
7 Feng Y, Chen C, Peng C Q, et al. Research progress of magnesium-based composites [J]. Chin. J. Nonferrous. Met., 2017, 27(12): 2385
冯艳, 陈超, 彭超群等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27(12): 2385
8 He Y, Yuan Q H, Luo L, et al. Current Study and Novel Ideas on Magnesium Matrix Composites [J]. J. aeronaut. Mater., 2018, 38(4): 26
何阳, 袁秋红, 罗岚等. 镁基复合材料研究进展及新思路 [J]. 航空材料学报, 2018, 38(4): 26
9 Shen K, Zhang Q, Huang ZH, et al. Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites [J]. Compos. Part A., 2014, 56(1): 44
10 Xiang SL, Wang XJ, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties [J]. Sci. Rep., 2016, 6: 38824
11 Xiang SL, Gupta M, Wang XJ, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Compos. Part. A., 2017, 100: 183
12 Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon., 2018, 139: 954
13 Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng. A., 2001, 298: 193
14 Saberi A, Bakhsheshi-Rad H R, Karamian E, et al. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties [J]. J. Alloys Compd., 2020, 821: 153379
15 Rashad M, Pan F S, Zhang J Y, et al. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy [J]. J. Alloys Compd., 2015, 646: 223
16 Rashad M, Pan F S, Lin D, et al. High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets [J]. Mater. Des., 2016, 89: 1242
17 Li C P, Wang Z G, Wang H Y, et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion [J]. J. Mater. Eng. Perform., 2016, 25: 5049
18 Li C P, Wang Z G, Zha M, et al. Effect of pre-oxidation treatment of nano-SiC particulates on microstructure and mechanical properties of SiC/Mg-8Al-1Sn composites fabricated by powder metallurgy combined with hot extrusion [J]. Materials., 2016, 9: 964
19 Rashad M, Pan F S, Asif M, et al. Powder metallurgy of Mg-1Al-1Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. J. Ind. Eng. Chem., 2014, 20: 4250
20 Muley S V, Singh S P, Sinha P, et al. Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior [J]. Mater. Des., 2014, 53: 475
21 Wang X J, Wu K, Huang W X, et al. Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM [J]. Compos. Sci. Technol., 2007, 67: 2253
22 Shen M J, Wang X J, Zhang M F, et al. Fabrication of bimodal size SiCp reinforced AZ31B magnesium matrix composites [J]. Mater. Sci. Eng. A., 2014, 601: 58
23 Shen M J, Wang X J, Li C D, et al. Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Des., 2013, 52: 1011
24 Qiu X. Microstructure and Mechannical Properties of SiCp/AZ91 Magnesium Matrix Composites Fabricated By Squeeze Casting [D]. Harbin: Harbin Institute of Technology, 2006
邱鑫. 挤压铸造SiCp/AZ91镁基复合材料的显微结构与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2006
25 Zhang C L. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2017
张春雷. Cf/Mg复合材料的制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
26 Wu G H, Song M H, Xiu Z Y, et al. Microstructure and Properties of M40 Carbon Fibre Reinforced Mg-Re-Zr Alloy Composites. J. Mater. Sci. Technol. [J]. J. Mater. Sci. Technol., 2009, 25 (03): 423426
27 Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites [J]. Mater. Sci. Eng. A., 2018, A711: 633
28 Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Mater. Sci. Eng. A., 2014, A597: 264
29 Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature., 2015, 528(7583): 539
30 Liu G J, Li W F, Du J. Investigation on wettability of Al-Mg metal matrix composites [J]. Foundry., 2006, 55(9): 911
刘贯军, 李文芳, 杜军. 铝、镁基复合材料的润湿性探究 [J]. 铸造, 2006, 55(9): 911
31 Wang T, Huang X F, Liang Y, et al. New ideas of compound reinforcement of particulate reinforced magnesium matrix composite [J]. Hot. Work. Technol., 2008, 37(20): 98
王韬, 黄晓锋, 梁艳等. 颗粒增强镁基复合材料的增强复合新思路 [J]. 热加工工艺, 2008, 37(20): 98
32 Russell-Stevens M, Todd R, Papakyriacou M. Microstructural analysis of a carbon fibre reinforced AZ91D magnesium alloy composite [J]. Surf. Interface Anal., 2005, 37(3): 336
33 Viaia J C, Claveyrolas G, Bosselet F. The chemical behaviour of carbon fibres in magnesium base Mg-Al alloys [J]. J. Mater. Sci., 2000, 35(7): 1813
34 Feldhoff A, Pippel E, Woltersdorf J. et al. Interface engineering of carbon-fiber reinforced Mg-Al alloys [J]. Adv. Eng. Mater, 2000, 2(8): 471
35 Bouix J, Berthet M P, Bosselet F, et al. Physico-chemistry of interfaces in inorganic-matrix composites [J]. Compos. Sci. Technol., 2001, 61(3): 355
36 Dan Z, Ping S, Shi L, et al. Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates [J]. Appl. Surf. Sci., 2010, 256(23): 7043
37 Wu F, Zhu J, Chen Y, et al. The effects of processing on the microstrues and properties of Gr/Mg composites [J]. Mater. Sci. Eng. A., 2000, 277(1-2): 143
38 Xia C J. Interface tailoring in coated carbon fiber reinforced magnesium alloy composites [D]. Shanghai: Shanghai Jiao Tong University, 2013
夏存娟. 涂层碳纤维镁基复合材料的界面控制 [D]. 上海: 上海交通大学, 2013
39 Contreras A, Leonb C A, Drew R A L, et al. Wettability and spreading kinetics of Al and Mg on TiC [J]. Scr. Mater., 2003, 48(12): 1625
40 Uozumi H, Kobayashi K, Nakanishi K, et al. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting [J]. Mater. Sci. Eng. A., 2008, 495(1-2): 282
41 Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon., 2016, 96: 843
42 Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127: 177
43 Reischer E, Pippel J, Woltersdorf G, et al. Carbon fibre-reinforced magnesium: Improvement of bending strength by nanodesign of boron nitride interlayers [J]. Mater. Chem. Phys., 2007, 104(1): 83-87
44 Korner C, Schaff W, Ottmuller M, et al. Carbon long fiber reinforced magnesium alloys [J]. Adv. Eng. Mater., 2000, 2 (6): 327
45 Nai M H, Wei J, Gupta M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites [J]. Mater. Des., 2014, 60(8): 490
46 Lu P, Xia C J, Wang H W, et al. Study on zinc-coated Cf /Mg composite [J]. Hot. Work. Technol., 2009, 38(10): 122
鲁鹏, 夏存娟, 王浩伟等. Zn涂层碳纤维增强镁基复合材料的研究 [J]. 热加工工艺, 2009, 38(10): 122
47 Wang X, Liu W, Hu X, et al. Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling [J]. Mater. Sci. Eng. A., 2018, 715: 49
48 Shen M J, Wang X J. Ying T,et al. Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles [J]. J. Alloys. Compd., 2016, 686: 831
49 Rashad M, Pan F, Liu Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method [J]. J. Magn. Alloys., 2016, 4(4): 270
50 Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composties [J]. Mater. Sci. Eng. A., 2018, 711: 633
51 Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide [J]. Mater. Charact., 2018, 138: 215
52 Han G, Wang Z, Liu K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs [J]. Mater. Sci. Eng. A., 2015, 628: 350
53 Liang J, Li H, Qi L, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion [J]. J. Alloys Compd., 2017, 728
54 Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide [J]. Mater. Charact., 2018, 138: 215
55 Song M H, Wu G H, Chen G Q, et al. Thermal expansion and dimensional stability of unidirectional and orthogonal fabric M40/AZ91D composites [J]. Trans. Nonferrous Met. Soc. China., 2010, 20(1): 47
56 Song M H, Wu G H, Yang W S, et al. Mechanical Properties of Cf/Mg Composites Fabricated by Pressure Infiltration Method [J]. J. Mater. Sci. Technol., 2010, 26(10): 931
57 Wang X J, Xiang Y Y, Hu X S. et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials [J]. Acta. Metall. Sin., 2019, 55(1): 73
王晓军, 向烨阳, 胡小石等. 碳纳米材料增强镁基复合材料研究进展 [J]. 金属学报, 2019, 55(1): 73
58 Jiang B. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2016
蒋博. Cf/Mg复合材料制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
59 Zhang C L. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2016
张春雷. Cf/Mg复合材料的制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
60 Sankaranarayanan S, Jayalakshmi S, Gupta M. Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite [J]. J. Magn. Alloys., 2014, 2(1): 13
61 Hassan S F, Gupta M. Development of high strength magnesium based composites using elemental nickel particulates as reinforcement [J]. J. Mater. Sci., 2002, 37(12): 2467
62 Wang W L, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering [J]. Compos. Sci. Technol., 2007, 67(7/8): 1541
63 Zhang X C, Wang C J, Deng K K, et al. Fabrication, microstructure and mechanical properties of the as-rolled ZW31/PMMCs laminate [J]. Mater. Sci. Eng. A., 2019, 761: 138043
64 Yuan Q H. Preparation and mechanical properties of AZ91 alloy composite reinforced with nano-carbon materials [D]. Nanchang: Nanchang University, 2016
袁秋红. 纳米碳材料增强AZ91镁基复合材料制备与性能研究 [D]. 南昌: 南昌大学, 2016
65 Du F, Yu D, Dai L, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high performance capacitance [J]. Chem. Mater., 2011, 23(21): 4810
66 Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv. 2020, 6: 1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[4] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[5] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[6] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[7] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[9] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[14] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
No Suggested Reading articles found!