|
|
Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements |
ZHOU Haitao( ), WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge |
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China |
|
Cite this article:
ZHOU Haitao, WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge. Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements. Chinese Journal of Materials Research, 2020, 34(11): 801-810.
|
Abstract Magnesium matrix composites with extremely strong design flexibility in properties are expected to meet the needs of low-density, high-strength and high stiffness materials in fields such as aerospace, military, and electronic packaging etc. However, there are still many problems needed to be solved for the application, especially the uniform dispersibility of reinforcements and the interface of reinforcement/matrix. In this article, the composition of magnesium matrix composites and the respective functions were introduced firstly. Then, the dispersion technology for reinforcements and the optimization technology for the interface of reinforcement/substrate were also discussed in detail. At last, the new ideas and developing trends were forecasted especially in terms of the limitations of mechanical properties for the magnesium matrix composites at the present.
|
Received: 13 April 2020
|
|
Fund: Joint Fund for Equipment Preresearch of Aerospace Science and Technology(6141B061304);National Nature Science Foundation of China(U2037601);Independent Research Program of the Eighth Aerospace Academy(ZY2019-58) |
1 |
Song J F, She J, Chen D L, et al. Review latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magn. Alloys., 2020, 8(1): 1
|
2 |
Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magn. Alloys., 2019, 7(3): 536
|
3 |
Alaneme K K, Okotete E A. Enhancing plastic deformability of Mg and its alloys-A review of traditional and nascent developments [J]. J. Magn. Alloys., 2017, 5(4): 460
|
4 |
Wang X J, Hu X S, Liu W Q, et al. Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites [J]. Mater. Sci. Eng. A., 2017, 682: 491
|
5 |
Haghshenas M. Mechanical characteristics of biodegradable magnesium matrix composites: A review [J]. J. Magn. Alloys., 2017, 5(2): 189
|
6 |
You S H, Huang Y D, Ulrich K K, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magn. Alloys., 2017, 5(3): 239
|
7 |
Feng Y, Chen C, Peng C Q, et al. Research progress of magnesium-based composites [J]. Chin. J. Nonferrous. Met., 2017, 27(12): 2385
|
|
冯艳, 陈超, 彭超群等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27(12): 2385
|
8 |
He Y, Yuan Q H, Luo L, et al. Current Study and Novel Ideas on Magnesium Matrix Composites [J]. J. aeronaut. Mater., 2018, 38(4): 26
|
|
何阳, 袁秋红, 罗岚等. 镁基复合材料研究进展及新思路 [J]. 航空材料学报, 2018, 38(4): 26
|
9 |
Shen K, Zhang Q, Huang ZH, et al. Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites [J]. Compos. Part A., 2014, 56(1): 44
|
10 |
Xiang SL, Wang XJ, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties [J]. Sci. Rep., 2016, 6: 38824
|
11 |
Xiang SL, Gupta M, Wang XJ, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Compos. Part. A., 2017, 100: 183
|
12 |
Wang M, Zhao Y, Wang L D, et al. Achieving high strength and ductility in graphene/magnesium composite via an in-situ reaction wetting process [J]. Carbon., 2018, 139: 954
|
13 |
Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles [J]. Mater. Sci. Eng. A., 2001, 298: 193
|
14 |
Saberi A, Bakhsheshi-Rad H R, Karamian E, et al. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties [J]. J. Alloys Compd., 2020, 821: 153379
|
15 |
Rashad M, Pan F S, Zhang J Y, et al. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy [J]. J. Alloys Compd., 2015, 646: 223
|
16 |
Rashad M, Pan F S, Lin D, et al. High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets [J]. Mater. Des., 2016, 89: 1242
|
17 |
Li C P, Wang Z G, Wang H Y, et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion [J]. J. Mater. Eng. Perform., 2016, 25: 5049
|
18 |
Li C P, Wang Z G, Zha M, et al. Effect of pre-oxidation treatment of nano-SiC particulates on microstructure and mechanical properties of SiC/Mg-8Al-1Sn composites fabricated by powder metallurgy combined with hot extrusion [J]. Materials., 2016, 9: 964
|
19 |
Rashad M, Pan F S, Asif M, et al. Powder metallurgy of Mg-1Al-1Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. J. Ind. Eng. Chem., 2014, 20: 4250
|
20 |
Muley S V, Singh S P, Sinha P, et al. Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior [J]. Mater. Des., 2014, 53: 475
|
21 |
Wang X J, Wu K, Huang W X, et al. Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM [J]. Compos. Sci. Technol., 2007, 67: 2253
|
22 |
Shen M J, Wang X J, Zhang M F, et al. Fabrication of bimodal size SiCp reinforced AZ31B magnesium matrix composites [J]. Mater. Sci. Eng. A., 2014, 601: 58
|
23 |
Shen M J, Wang X J, Li C D, et al. Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Des., 2013, 52: 1011
|
24 |
Qiu X. Microstructure and Mechannical Properties of SiCp/AZ91 Magnesium Matrix Composites Fabricated By Squeeze Casting [D]. Harbin: Harbin Institute of Technology, 2006
|
|
邱鑫. 挤压铸造SiCp/AZ91镁基复合材料的显微结构与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2006
|
25 |
Zhang C L. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2017
|
|
张春雷. Cf/Mg复合材料的制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
|
26 |
Wu G H, Song M H, Xiu Z Y, et al. Microstructure and Properties of M40 Carbon Fibre Reinforced Mg-Re-Zr Alloy Composites. J. Mater. Sci. Technol. [J]. J. Mater. Sci. Technol., 2009, 25 (03): 423426
|
27 |
Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites [J]. Mater. Sci. Eng. A., 2018, A711: 633
|
28 |
Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite [J]. Mater. Sci. Eng. A., 2014, A597: 264
|
29 |
Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature., 2015, 528(7583): 539
|
30 |
Liu G J, Li W F, Du J. Investigation on wettability of Al-Mg metal matrix composites [J]. Foundry., 2006, 55(9): 911
|
|
刘贯军, 李文芳, 杜军. 铝、镁基复合材料的润湿性探究 [J]. 铸造, 2006, 55(9): 911
|
31 |
Wang T, Huang X F, Liang Y, et al. New ideas of compound reinforcement of particulate reinforced magnesium matrix composite [J]. Hot. Work. Technol., 2008, 37(20): 98
|
|
王韬, 黄晓锋, 梁艳等. 颗粒增强镁基复合材料的增强复合新思路 [J]. 热加工工艺, 2008, 37(20): 98
|
32 |
Russell-Stevens M, Todd R, Papakyriacou M. Microstructural analysis of a carbon fibre reinforced AZ91D magnesium alloy composite [J]. Surf. Interface Anal., 2005, 37(3): 336
|
33 |
Viaia J C, Claveyrolas G, Bosselet F. The chemical behaviour of carbon fibres in magnesium base Mg-Al alloys [J]. J. Mater. Sci., 2000, 35(7): 1813
|
34 |
Feldhoff A, Pippel E, Woltersdorf J. et al. Interface engineering of carbon-fiber reinforced Mg-Al alloys [J]. Adv. Eng. Mater, 2000, 2(8): 471
|
35 |
Bouix J, Berthet M P, Bosselet F, et al. Physico-chemistry of interfaces in inorganic-matrix composites [J]. Compos. Sci. Technol., 2001, 61(3): 355
|
36 |
Dan Z, Ping S, Shi L, et al. Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates [J]. Appl. Surf. Sci., 2010, 256(23): 7043
|
37 |
Wu F, Zhu J, Chen Y, et al. The effects of processing on the microstrues and properties of Gr/Mg composites [J]. Mater. Sci. Eng. A., 2000, 277(1-2): 143
|
38 |
Xia C J. Interface tailoring in coated carbon fiber reinforced magnesium alloy composites [D]. Shanghai: Shanghai Jiao Tong University, 2013
|
|
夏存娟. 涂层碳纤维镁基复合材料的界面控制 [D]. 上海: 上海交通大学, 2013
|
39 |
Contreras A, Leonb C A, Drew R A L, et al. Wettability and spreading kinetics of Al and Mg on TiC [J]. Scr. Mater., 2003, 48(12): 1625
|
40 |
Uozumi H, Kobayashi K, Nakanishi K, et al. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting [J]. Mater. Sci. Eng. A., 2008, 495(1-2): 282
|
41 |
Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO [J]. Carbon., 2016, 96: 843
|
42 |
Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127: 177
|
43 |
Reischer E, Pippel J, Woltersdorf G, et al. Carbon fibre-reinforced magnesium: Improvement of bending strength by nanodesign of boron nitride interlayers [J]. Mater. Chem. Phys., 2007, 104(1): 83-87
|
44 |
Korner C, Schaff W, Ottmuller M, et al. Carbon long fiber reinforced magnesium alloys [J]. Adv. Eng. Mater., 2000, 2 (6): 327
|
45 |
Nai M H, Wei J, Gupta M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites [J]. Mater. Des., 2014, 60(8): 490
|
46 |
Lu P, Xia C J, Wang H W, et al. Study on zinc-coated Cf /Mg composite [J]. Hot. Work. Technol., 2009, 38(10): 122
|
|
鲁鹏, 夏存娟, 王浩伟等. Zn涂层碳纤维增强镁基复合材料的研究 [J]. 热加工工艺, 2009, 38(10): 122
|
47 |
Wang X, Liu W, Hu X, et al. Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling [J]. Mater. Sci. Eng. A., 2018, 715: 49
|
48 |
Shen M J, Wang X J. Ying T,et al. Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles [J]. J. Alloys. Compd., 2016, 686: 831
|
49 |
Rashad M, Pan F, Liu Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method [J]. J. Magn. Alloys., 2016, 4(4): 270
|
50 |
Du X, Du W B, Wang Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composties [J]. Mater. Sci. Eng. A., 2018, 711: 633
|
51 |
Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide [J]. Mater. Charact., 2018, 138: 215
|
52 |
Han G, Wang Z, Liu K, et al. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs [J]. Mater. Sci. Eng. A., 2015, 628: 350
|
53 |
Liang J, Li H, Qi L, et al. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion [J]. J. Alloys Compd., 2017, 728
|
54 |
Yuan Q H, Qiu Z Q, Zhou G H, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide [J]. Mater. Charact., 2018, 138: 215
|
55 |
Song M H, Wu G H, Chen G Q, et al. Thermal expansion and dimensional stability of unidirectional and orthogonal fabric M40/AZ91D composites [J]. Trans. Nonferrous Met. Soc. China., 2010, 20(1): 47
|
56 |
Song M H, Wu G H, Yang W S, et al. Mechanical Properties of Cf/Mg Composites Fabricated by Pressure Infiltration Method [J]. J. Mater. Sci. Technol., 2010, 26(10): 931
|
57 |
Wang X J, Xiang Y Y, Hu X S. et al. Recent progress on magnesium matrix composites reinforced by carbonaceous nanomaterials [J]. Acta. Metall. Sin., 2019, 55(1): 73
|
|
王晓军, 向烨阳, 胡小石等. 碳纳米材料增强镁基复合材料研究进展 [J]. 金属学报, 2019, 55(1): 73
|
58 |
Jiang B. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2016
|
|
蒋博. Cf/Mg复合材料制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
|
59 |
Zhang C L. Study on fabrication, microstructure and properties of Cf/Mg composites [D]. Harbin: Harbin Institute of Technology, 2016
|
|
张春雷. Cf/Mg复合材料的制备与组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
|
60 |
Sankaranarayanan S, Jayalakshmi S, Gupta M. Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite [J]. J. Magn. Alloys., 2014, 2(1): 13
|
61 |
Hassan S F, Gupta M. Development of high strength magnesium based composites using elemental nickel particulates as reinforcement [J]. J. Mater. Sci., 2002, 37(12): 2467
|
62 |
Wang W L, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering [J]. Compos. Sci. Technol., 2007, 67(7/8): 1541
|
63 |
Zhang X C, Wang C J, Deng K K, et al. Fabrication, microstructure and mechanical properties of the as-rolled ZW31/PMMCs laminate [J]. Mater. Sci. Eng. A., 2019, 761: 138043
|
64 |
Yuan Q H. Preparation and mechanical properties of AZ91 alloy composite reinforced with nano-carbon materials [D]. Nanchang: Nanchang University, 2016
|
|
袁秋红. 纳米碳材料增强AZ91镁基复合材料制备与性能研究 [D]. 南昌: 南昌大学, 2016
|
65 |
Du F, Yu D, Dai L, et al. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high performance capacitance [J]. Chem. Mater., 2011, 23(21): 4810
|
66 |
Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv. 2020, 6: 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|