Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 853-860    DOI: 10.11901/1005.3093.2020.075
ARTICLES Current Issue | Archive | Adv Search |
Simulation Calculation for Adsorption Mechanism of Tris (chloroisopropyl) Phosphate on Surface of Montmorillonite
LIU Shanshan1, LAN Yanhua3, YANG Rongjie2(), ZHOU Zhiming1
1.School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
2.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
3.School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
Cite this article: 

LIU Shanshan, LAN Yanhua, YANG Rongjie, ZHOU Zhiming. Simulation Calculation for Adsorption Mechanism of Tris (chloroisopropyl) Phosphate on Surface of Montmorillonite. Chinese Journal of Materials Research, 2020, 34(11): 853-860.

Download:  HTML  PDF(6490KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To explore the gelation mechanism of tris (chloroisopropyl) phosphate (TCPP) and sodium montmorillonite (NaMMT), the molecular models of TCPP and NaMMT at the micro level were established based on the density functional theory method, The adsorption parameters of TCPP on 001 lattice plane and interplanar of NaMMT in anhydrous and hydrous conditions were calculated. The results show that TCPP can stably adsorb on the 001 lattice plane and interplanar of NaMMT through physical force. And sodium ions are beneficial to the adsorption of TCPP on NaMMT surface. In the presence of water molecules TCPP and water molecule on the surface of NaMMT exhibit synergistic adsorption, and water molecules serve as "bridges" to connect TCPP and NaMMT surfaces, enhancing interaction between them. Experimental research also shows that water can significantly accelerate the gelation rate of TCPP and NaMMT. NaMMT and TCPP swell spontaneously through strong interaction to form a physical cross-linked structure, and then the network can absorb a large amount of TCPP liquid, and water molecules enhance the interaction of the system, making the cross-linked network easier to form, which accelerate the gelation process.

Key words:  inorganic non-metallic materials      tris (chloroisopropyl) phosphate      montmorillonite      adsorption      simulation     
Received:  11 March 2020     
ZTFLH:  O641  
Fund: National International Science and Technology Cooperation Project(2014DFA52900)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.075     OR     https://www.cjmr.org/EN/Y2020/V34/I11/853

Fig.1  Ball and stick model of NaMMT
Fig.2  Molecular structure (a) and simulated structure (b) of TCPP
Fig.3  Na-001 surface (a) and None-001 surface (b) of NaMMT
Fig.4  Optimal adsorption configurations of TCPP adsorption on Na-001 (a), None-001 surfaces (b) and Interlayer (c)
SystemSurfaceAdsorbentsStructureEads/kJ·mol-1
NaMMT-TCPPNa-001TCPPM(Na-001)T-101.85
None-001TCPPM(None-001)T-92.39
InterlayerTCPPM(Inter)T-81.26
NaMMT-H2ONa-001H2OM(Na-001)W-134.74
None-001H2OM(None-001)W-105.18
InterlayerH2OM(Inter)W-94.15
NaMMT-TCPP-H2ONa-001H2O/TCPPM(Na-001)TW-139.44
None-001H2O/TCPPM(None-001)TW-130.48
InterlayerH2O/TCPPM(Inter)TW-94.61
Table 1  Adsorption energy of adsorbents on the surface and crystal layers of Na-001 and None-001
M(Na-001)TM(None-001)TM(Inter)T
BondBond length/nmBondBond length/nmBondBond length/nm
Na1-Cl13.673Cl1-O13.510Cl1-O13.759
Cl1-O13.623Cl2-O23.763Cl2-O23.688
Cl2-O23.972H1-O33.258H1-O32.401
--P-O42.876H2-O42.735
----H3-O53.237
Table 2  Bond conditions and bond length in different systems
Fig.5  State density of Na and Cl atoms
Fig.6  State density of Cl and O atoms
Fig.7  State density of H and O atoms
Fig.8  Effect of water on gelation of TCPP and NaMMT (A) TCPP and undried NaMMT (B) TCPP and dry NaMMT
Fig.9  Optimal configurations of a H2O molecule adsorbed on Na-001 (a), None-001 (b) and Interlayer (c)
Fig.10  Optimal configurations of H2O/TCPP adsorbed on three different surfaces
M(Na-001) TWM(None-001) TWM(Inter)TW
BondBond length/nmBondBond length/nmBondBond length/nm
Na-O3.026H-O2.610H-O3.041
H-O2.821H-O2.027
H-O2.634H-O2.562H-O2.790
H-O2.790H-O2.593
H-O2.734H-O2.402H-O2.762
H-O2.530
Table 3  Bond length in NaMMT-TCPP-H2O system
1 Tortora M, Gorrasi G, Vittoria V, et al. Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites [J]. Polymer, 2002, 43: 6147
2 Paul M A, Alexandre M, Degée P, et al. New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study [J]. Polymer, 2003, 44: 443
3 Wallis P J, Chaffee A L, Gates W P, et al. Partial exchange of Fe(III) montmorillonite with hexadecyltrimethylammonium cation increases catalytic activity for hydrophobic substrates [J]. Langmuir, 2010, 26: 4258
4 Li N, Ma J Z, Bao Y. Development on modification of montmorillonite [J]. Chem. Res., 2009, 20(1): 98
李娜, 马建中, 鲍艳. 蒙脱土改性研究进展 [J]. 化学研究, 2009, 20(1): 98
5 Costache M C, Heidecker M J, Manias E, et al. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene [J]. Polymer, 2007, 48: 6532
6 Bee S T, Hassan A, Ratnam C T, et al. Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate blends [J]. Nucl. Instrum. Methods Phys. Res., 2013, 299: 42
7 Shen Z Q, Chen L, Lin L, et al. Synergistic effect of layered nanofillers in intumescent flame-retardant EPDM: montmorillonite versus layered double hydroxides [J]. Ind. Eng. Chem. Res., 2013, 52: 8454
8 Ma H Y, Tong L F, Xu U Z, et al. Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites [J]. Appl. Clay Sci., 2008, 42: 238
9 Yi D Q, Yang H X, Zhao M, et al. A novel, low surface charge density, anionically modified montmorillonite for polymer nanocomposites [J]. RSC Adv., 2017, 7: 5980
10 Huang G B, Gao J R, Li Y J, et al. Functionalizing nano-montmorillonites by modified with intumescent flame retardant: Preparation and application in polyurethane [J]. Polym. Degradat. Stabil., 2010, 95: 245
11 Liu S S, Zhou Z M, Yang R J. Gelation and nanostructure of tris (chloroisopropyl) phosphate and sodium montmorillonite [J]. J. Chin. Ceram. Soc., 2019, 48: 283
刘珊珊, 周智明, 杨荣杰. 三(氯异丙基)磷酸酯与钠基蒙脱石的凝胶化及其纳米结构 [J]. 硅酸盐学报, 2019, 48: 283
12 Escamilla-Roa E, Huertas F J, Hernández-Laguna A, et al. A DFT study of the adsorption of glycine in the interlayer space of montmorillonite [J]. Phys. Chem. Chem. Phys., 2017, 19: 14961
13 Ning H, Tao X M, Wang M M, et al. Density functional theory study on hydrogen adsorption on Be(0001) surface [J]. Acta Phys. Chim. Sin., 2010, 26: 2267
宁华, 陶向明, 王芒芒等. 氢原子在Be(0001)表面吸附的密度泛函理论研究 [J]. 物理化学学报, 2010, 26: 2267
14 Peng C L, Min F F, Liu L Y, et al. The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: A DFT study [J]. Surf. Interf. Anal., 2016, 49: 267
15 Boek E S, Coveney P V, Skipper N T. Molecular modeling of clay hydration: a study of hysteresis loops in the swelling curves of sodium montmorillonites [J]. Langmuir, 1995, 11: 4629
16 Boek E S, Coveney P V, Skipper N T. Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor [J]. J. Am. Chem. Soc., 1995, 117: 12608
17 Chang F R C, Skipper N T, Sposito G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates [J]. Langmuir, 1995, 11: 2734
18 Voora V K, Al-Saidi W A, Jordan K D. Density functional theory study of pyrophyllite and M-montmorillonites (M=Li, Na, K, Mg, and Ca): role of dispersion interactions [J]. J. Phys. Chem., 2011, 115A: 9695
19 Yang Z Y, Liu W L, Zhao R, et al. DFT study on the inhibition of hydration expansion of montmorillonite by 2-hydroxyethyl trimethyl ammonium chloride [J]. J. China Coal Soc., 2018, 43: 245
杨宗义, 刘文礼, 赵娆等. 2-羟乙基三甲基氯化铵抑制蒙脱石水化膨胀的密度泛函计算 [J]. 煤炭学报, 2018, 43: 245
20 Yang Z Y. Quantum chemical study on inhibiting the expansion and dissolution of montmorillonite in slime water system [D]. Beijing: China University of Mining and Technology, 2018
杨宗义. 煤泥水体系中抑制蒙脱石膨胀分散的量子化学研究 [D]. 北京: 中国矿业大学, 2018
21 Fan X L, Liu Y, Du X J, et al. Dissociative adsorption of methanethiol on Cu(111) surface: a density functional theory study [J]. Acta Phys. Chim. Sin., 2013, 29: 263
范晓丽, 刘燕, 杜秀娟等. 甲硫醇在Cu(111)表面的解离吸附: 密度泛函理论研究 [J]. 物理化学学报, 2013, 29: 263
22 Henao L, Mazeau K. The molecular basis of the adsorption of bacterial exopolysaccharides on montmorillonite mineral surface [J]. Mol. Simulat., 2008, 34: 1185
23 Wang Q G, Yang Z X, Wei S Y. DFT+U study on the interaction of water molecule and Ceria (111) surface [J]. Acta Phys. Chim. Sin., 2009, 25: 2513
王清高, 杨宗献, 危书义. 水分子和二氧化铈(111)表面相互作用的DFT+U研究 [J]. 物理化学学报, 2009, 25: 2513
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[4] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. 材料研究学报, 2023, 37(5): 353-361.
[8] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
No Suggested Reading articles found!