|
|
Simulation Calculation for Adsorption Mechanism of Tris (chloroisopropyl) Phosphate on Surface of Montmorillonite |
LIU Shanshan1, LAN Yanhua3, YANG Rongjie2( ), ZHOU Zhiming1 |
1.School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China 2.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China 3.School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China |
|
Cite this article:
LIU Shanshan, LAN Yanhua, YANG Rongjie, ZHOU Zhiming. Simulation Calculation for Adsorption Mechanism of Tris (chloroisopropyl) Phosphate on Surface of Montmorillonite. Chinese Journal of Materials Research, 2020, 34(11): 853-860.
|
Abstract To explore the gelation mechanism of tris (chloroisopropyl) phosphate (TCPP) and sodium montmorillonite (NaMMT), the molecular models of TCPP and NaMMT at the micro level were established based on the density functional theory method, The adsorption parameters of TCPP on 001 lattice plane and interplanar of NaMMT in anhydrous and hydrous conditions were calculated. The results show that TCPP can stably adsorb on the 001 lattice plane and interplanar of NaMMT through physical force. And sodium ions are beneficial to the adsorption of TCPP on NaMMT surface. In the presence of water molecules TCPP and water molecule on the surface of NaMMT exhibit synergistic adsorption, and water molecules serve as "bridges" to connect TCPP and NaMMT surfaces, enhancing interaction between them. Experimental research also shows that water can significantly accelerate the gelation rate of TCPP and NaMMT. NaMMT and TCPP swell spontaneously through strong interaction to form a physical cross-linked structure, and then the network can absorb a large amount of TCPP liquid, and water molecules enhance the interaction of the system, making the cross-linked network easier to form, which accelerate the gelation process.
|
Received: 11 March 2020
|
|
Fund: National International Science and Technology Cooperation Project(2014DFA52900) |
1 |
Tortora M, Gorrasi G, Vittoria V, et al. Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites [J]. Polymer, 2002, 43: 6147
|
2 |
Paul M A, Alexandre M, Degée P, et al. New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study [J]. Polymer, 2003, 44: 443
|
3 |
Wallis P J, Chaffee A L, Gates W P, et al. Partial exchange of Fe(III) montmorillonite with hexadecyltrimethylammonium cation increases catalytic activity for hydrophobic substrates [J]. Langmuir, 2010, 26: 4258
|
4 |
Li N, Ma J Z, Bao Y. Development on modification of montmorillonite [J]. Chem. Res., 2009, 20(1): 98
|
|
李娜, 马建中, 鲍艳. 蒙脱土改性研究进展 [J]. 化学研究, 2009, 20(1): 98
|
5 |
Costache M C, Heidecker M J, Manias E, et al. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene [J]. Polymer, 2007, 48: 6532
|
6 |
Bee S T, Hassan A, Ratnam C T, et al. Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate blends [J]. Nucl. Instrum. Methods Phys. Res., 2013, 299: 42
|
7 |
Shen Z Q, Chen L, Lin L, et al. Synergistic effect of layered nanofillers in intumescent flame-retardant EPDM: montmorillonite versus layered double hydroxides [J]. Ind. Eng. Chem. Res., 2013, 52: 8454
|
8 |
Ma H Y, Tong L F, Xu U Z, et al. Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites [J]. Appl. Clay Sci., 2008, 42: 238
|
9 |
Yi D Q, Yang H X, Zhao M, et al. A novel, low surface charge density, anionically modified montmorillonite for polymer nanocomposites [J]. RSC Adv., 2017, 7: 5980
|
10 |
Huang G B, Gao J R, Li Y J, et al. Functionalizing nano-montmorillonites by modified with intumescent flame retardant: Preparation and application in polyurethane [J]. Polym. Degradat. Stabil., 2010, 95: 245
|
11 |
Liu S S, Zhou Z M, Yang R J. Gelation and nanostructure of tris (chloroisopropyl) phosphate and sodium montmorillonite [J]. J. Chin. Ceram. Soc., 2019, 48: 283
|
|
刘珊珊, 周智明, 杨荣杰. 三(氯异丙基)磷酸酯与钠基蒙脱石的凝胶化及其纳米结构 [J]. 硅酸盐学报, 2019, 48: 283
|
12 |
Escamilla-Roa E, Huertas F J, Hernández-Laguna A, et al. A DFT study of the adsorption of glycine in the interlayer space of montmorillonite [J]. Phys. Chem. Chem. Phys., 2017, 19: 14961
|
13 |
Ning H, Tao X M, Wang M M, et al. Density functional theory study on hydrogen adsorption on Be(0001) surface [J]. Acta Phys. Chim. Sin., 2010, 26: 2267
|
|
宁华, 陶向明, 王芒芒等. 氢原子在Be(0001)表面吸附的密度泛函理论研究 [J]. 物理化学学报, 2010, 26: 2267
|
14 |
Peng C L, Min F F, Liu L Y, et al. The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: A DFT study [J]. Surf. Interf. Anal., 2016, 49: 267
|
15 |
Boek E S, Coveney P V, Skipper N T. Molecular modeling of clay hydration: a study of hysteresis loops in the swelling curves of sodium montmorillonites [J]. Langmuir, 1995, 11: 4629
|
16 |
Boek E S, Coveney P V, Skipper N T. Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor [J]. J. Am. Chem. Soc., 1995, 117: 12608
|
17 |
Chang F R C, Skipper N T, Sposito G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates [J]. Langmuir, 1995, 11: 2734
|
18 |
Voora V K, Al-Saidi W A, Jordan K D. Density functional theory study of pyrophyllite and M-montmorillonites (M=Li, Na, K, Mg, and Ca): role of dispersion interactions [J]. J. Phys. Chem., 2011, 115A: 9695
|
19 |
Yang Z Y, Liu W L, Zhao R, et al. DFT study on the inhibition of hydration expansion of montmorillonite by 2-hydroxyethyl trimethyl ammonium chloride [J]. J. China Coal Soc., 2018, 43: 245
|
|
杨宗义, 刘文礼, 赵娆等. 2-羟乙基三甲基氯化铵抑制蒙脱石水化膨胀的密度泛函计算 [J]. 煤炭学报, 2018, 43: 245
|
20 |
Yang Z Y. Quantum chemical study on inhibiting the expansion and dissolution of montmorillonite in slime water system [D]. Beijing: China University of Mining and Technology, 2018
|
|
杨宗义. 煤泥水体系中抑制蒙脱石膨胀分散的量子化学研究 [D]. 北京: 中国矿业大学, 2018
|
21 |
Fan X L, Liu Y, Du X J, et al. Dissociative adsorption of methanethiol on Cu(111) surface: a density functional theory study [J]. Acta Phys. Chim. Sin., 2013, 29: 263
|
|
范晓丽, 刘燕, 杜秀娟等. 甲硫醇在Cu(111)表面的解离吸附: 密度泛函理论研究 [J]. 物理化学学报, 2013, 29: 263
|
22 |
Henao L, Mazeau K. The molecular basis of the adsorption of bacterial exopolysaccharides on montmorillonite mineral surface [J]. Mol. Simulat., 2008, 34: 1185
|
23 |
Wang Q G, Yang Z X, Wei S Y. DFT+U study on the interaction of water molecule and Ceria (111) surface [J]. Acta Phys. Chim. Sin., 2009, 25: 2513
|
|
王清高, 杨宗献, 危书义. 水分子和二氧化铈(111)表面相互作用的DFT+U研究 [J]. 物理化学学报, 2009, 25: 2513
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|