Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (11): 845-852    DOI: 10.11901/1005.3093.2020.070
ARTICLES Current Issue | Archive | Adv Search |
Effect of Tempering Temperature on Microstructure and Properties of Intercritical Annealing Marine Steel
ZHANG Xiangyun1, LI Jiguang1(), YAN Ling2, HE Xuze1, GUO Jing1
1.School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
2.State Key Laboratory of Metal Materials for Marine Equipment and Applications, Anshan 114009, China
Cite this article: 

ZHANG Xiangyun, LI Jiguang, YAN Ling, HE Xuze, GUO Jing. Effect of Tempering Temperature on Microstructure and Properties of Intercritical Annealing Marine Steel. Chinese Journal of Materials Research, 2020, 34(11): 845-852.

Download:  HTML  PDF(6511KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of tempering temperature on microstructure and mechanical properties of 690 MPa grade marine steel after quenching + intercritical annealing + tempering three-step heat treatment was investigated in terms of the microstructure evolution, the volume fraction of retained austenite and the change in mechanical properties. The results show that the microstructure of the steel after tempering is a mixture of tempered bainite/martensite, intercritical ferrite and retained austenite. With the increasing tempering temperature, bainite/martensite and intercritical ferrite gradually decomposed into small grains, while the volume fraction of retained austenite gradually increased. Yield strength decreased from 787 MPa to 716 MPa. Plasticity and low temperature toughness were significantly enhanced, elongation after fracture increased from 20.30% to 29.24%, and impact energy at -40℃ increased from 77 J to 150 J. The increase of the volume fraction of retained austenite lead to the increase of crack propagation work, which was the main cause responsible to the improvement of low temperature toughness. The decomposition of bainite/martensite and the formation of retained austenite lead to grain refinement, the number of dislocations with low KAM values in the grains increased, and the frequency of low angle grain boundary peaks increased, which may be beneficial to the significant increment of plasticity and toughness of the steel.

Key words:  metallic materials      offshore steel      intercritical annealing      retained austenite      low temperature toughness     
Received:  05 March 2020     
ZTFLH:  TG156.5  
Fund: National Natural Science Foundation of China(U1860112);the State Key Laboratory of Metal Materials for Marine Equipment and Applications and University of Science and Technology Liaoning Joint Funded Project(SKLMEA-USTL-201701)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.070     OR     https://www.cjmr.org/EN/Y2020/V34/I11/845

Fig.1  Schematic diagram of heat treatment process of the test steel
Fig.2  SEM images of the test steel subjected to various heat treatments (a) T580; (b) T600; (c) T620; (d) T640
Fig.3  TEM image of retained austenite in sample T640 (a), XRD spectra (b) and volume fraction of retained austenite (c) for samples treated at different tempering temperature
Sample

Rp0.2

/MPa

Rm

/MPa

A

/%

Z

/%

KV2(-40℃)

/J

T58078793820.305877
T60077990021.2862104
T62070885724.0268128
T64071681229.2473150
Table 1  Mechanical properties of the test steel subjected to various heat treatments
Fig.4  Load and impact energy versus displacement curves of samples at different heat treatment and impact temperature (a) T620 and T640 at -40℃; (b) T620 and T640 at -20℃; (c) T620 and T640 at 20℃ and (d) T640 at -40℃, -20℃ and 20℃
Fig.5  Kernel average misorientation maps of the test steel subjected to various heat treatments (a) T580; (b) T600; (c) T620; (d) T640
Fig.6  Grain boundary distribution of the test steel subjected to various heat treatments (a) T580; (b) T600; (c) T620; (d) T640
Fig.7  Misorientation angle distribution maps of the test steel subjected to various heat treatments (a) T580; (b) T600; (c) T620; (d) T640
1 Sun X J, Yuan S F, Xie Z J, et al. Microstructure-property relationship in a high strength-high toughness combination ultra-heavy gauge offshore plate steel: the significance of multiphase microstructure [J]. Mater. Sci. Eng., 2017, 689A: 212
2 Yang C F, Zhang Y Q. New generation of HSLA steels for naval structures [J]. Iron Steel, 2001, 36(11): 52
杨才福, 张永权. 新一代易焊接高强度高韧性船体钢的研究 [J]. 钢铁, 2001, 36(11): 52
3 Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
4 Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite+martensite) duplex hot-rolled steel achieving 1.6 Gpa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
5 Suh D W, Park S J, Lee T H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel [J]. Metall. Mater. Trans., 2010, 41A: 3978
6 Lei M, Guo Y Y. Formation of precipitated austenite in 9% Ni steel and its function at cryogenic temperature [J]. Acta Metall. Sin., 1989, 25(1): 13
雷鸣, 郭蕴宜. 9%Ni钢中沉淀奥氏体的形成过程及其在深冷下的表现 [J]. 金属学报, 1989, 25(1): 13
7 Zhang F T, Wang J Y, Guo Y Y. On the relationship between return austenite and toughness for Ni9 steel at cryogenic temperatures [J]. Acta Metall. Sin., 1984, 20: 405
张弗天, 王景韫, 郭蕴宜. Ni9钢中的回转奥氏体与低温韧性 [J]. 金属学报, 1984, 20: 405
8 Zhang X Y, Li J G, Yan L, et al. Effect of film-like retained austenite on low temperature toughness of high strength offshore steel [J]. Mater. Res. Expr., 2019, 6: 116530
9 Huang L, Deng X T, Liu J, et al. Relationship between retained austenite stability and cryogenic impact toughness in 0.12C-3.0Mn low carbon medium manganese steel [J]. Acta Metall. Sin., 2017, 53: 316
黄龙, 邓想涛, 刘佳等. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系 [J]. 金属学报, 2017, 53: 316
10 Xie Z J, Shang C J, Zhou W H, et al. Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel [J]. Acta Metall. Sin., 2016, 52: 224
谢振家, 尚成嘉, 周文浩等. 低合金多相钢中残余奥氏体对塑性和韧性的影响 [J]. 金属学报, 2016, 52: 224
11 Zhou W H, Xie Z J, Guo H, et al. Regulation of multi-phase microstructure and mechanical properties in a 700 MPa grade low carbon low alloy steel with good ductility [J]. Acta Metall. Sin., 2015, 51: 407
周文浩, 谢振家, 郭晖等. 700 MPa级高塑低碳低合金钢的多相组织调控及性能 [J]. 金属学报, 2015, 51: 407
12 Zhou Y L, Jia T, Zhang X J, et al. Investigation on tempering of granular bainite in an offshore platform steel [J]. Mater. Sci. Eng., 2015, 626A: 352
13 Hidalgo J, Findley K O, Santofimia M J. Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering [J]. Mater. Sci. Eng., 2017, 690A: 337
14 Xi X H, Wang J L, Li X, et al. The role of intercritical annealing in enhancing low-temperature toughness of Fe-C-Mn-Ni-Cu structural steel [J]. Metall. Mater. Trans., 2019, 50A: 2912
15 Xi X H, Wang J L, Chen L Q, et al. Tailoring mechanical properties of a low carbon Cu-containing structural steel by two-step intercritical heat treatment [J]. Met. Mater. Int., 2019, 25: 1477
16 Xi X H, Wang J L, Chen L Q, et al. Understanding the role of copper addition in low-temperature toughness of low-carbon, high-strength steel [J]. Metall. Mater. Trans., 2019, 50A: 5627
17 Santofimia M J, Nguyen-Minh T, Zhao L, et al. New low carbon Q&P steels containing film-like intercritical ferrite [J]. Mater. Sci. Eng., 2010, 527A: 6429
18 Chen J, Lv M Y, Tang S, et al. Correlation between mechanical properties and retained austenite characteristics in a low-carbon medium manganese alloyed steel plate [J]. Mater. Charact., 2015, 106: 108
19 Lai G Y, Wood W E, Clark R A, et al. The effect of austenitizing temperature on the microstructure and mechanical properties of as-quenched 4340 steel [J]. Metall. Trans., 1974, 5: 1663
20 Yu H, Zhang D D, Xiao R T, et al. Effect of tempering temperature on low angle grain boundaries in Q960 steel [J]. J. Univ. Sci. Technol. Beijing, 2011, 33: 952
于浩, 张道达, 肖荣亭等. 回火温度对Q960钢小角度晶界的影响 [J]. 北京科技大学学报, 2011, 33: 952
21 Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235: 713
22 Liu J L, Xue F, Ji S K. EBSD study of a high strength low yield ratio steel with dual phase structure [J]. J. Chin. Electr. Microsc. Soc., 2006, 25(suppl.1): 360
刘俊亮, 薛菲, 季思凯. 一种双相组织的高强度低屈强比钢的EBSD研究 [J]. 电子显微学报, 2006, 25(): 360
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!