Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 584-590    DOI: 10.11901/1005.3093.2020.042
ARTICLES Current Issue | Archive | Adv Search |
Hydrothermal Synthesis and Electrochemical Performance of Co3O4@CNTs Composite Film
LIU Zhijun, LI Zhifeng(), WANG Chunxiang, XIE Guangming, HUANG Qingyan, ZHONG Shengwen
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Cite this article: 

LIU Zhijun, LI Zhifeng, WANG Chunxiang, XIE Guangming, HUANG Qingyan, ZHONG Shengwen. Hydrothermal Synthesis and Electrochemical Performance of Co3O4@CNTs Composite Film. Chinese Journal of Materials Research, 2020, 34(8): 584-590.

Download:  HTML  PDF(3741KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A facile and effective method has been developed for synthesis of Co3O4/carbon nanotube film (Co3O4@CNTs) composites as anode materials in LIBs. With 5-sulfosalicylic acid and glutaric acid as chelation and oxidation reagents, the CoSO4 can be directly oxidized into nanoscale Co3O4 under hydrothermal conditions. Co3O4/carbon nanotube film (Co3O4@CNTs) composites can be easily synthesized and the Co3O4 particles are tightly attached to carbon nanotubes via the same process. The electrochemical test results show that the composites film has higher discharge specific capacity and excellent rate performance. At 0.2C rate the initial discharge specific capacity can be up to 1712.5 mAh·g-1, the discharge specific capacity is still about 1128.9 mAh·g-1 after 100 cycles. At 1C rate the discharge specific capacity of 527.8 mAh·g-1 is still maintained after 100 cycles. The excellent performance is due to the synergistic combination of Co3O4 and CNTs. The highly dispersed Co3O4 expands the contact area between the active material and the electrolyte, and CNTs can form the conductive network to increase the electron conductivity, thus improve the cycle performance of Co3O4 anode materials.

Key words:  composite      anode material      hydrothermal      Co3O4      carbon nanotube film     
Received:  12 February 2020     
ZTFLH:  O614.8  
Fund: the National Natural Science Foundation of China(51874151);the National Natural Science Foundation of China(51964017);Jiangxi Provincial Education Office Natural Science Fund Project(GJJ160202);Jiangxi Provincial Education Office Natural Science Fund Project(GJJ190428)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.042     OR     https://www.cjmr.org/EN/Y2020/V34/I8/584

Fig.1  Preparation process of Co3O4@CNTs composite
Fig.2  XRD pattern of Co3O4 and Co3O4@CNTs film samples
Fig.3  SEM images of Co3O4 power (a, b) and Co3O4@CNTs film (c, d)
Fig.4  XPS patterns whole element (a) and high resolution of Co 2p (b) of Co3O4
Fig. 5  CVs of Co3O4 (a) and Co3O4@CNTs (b) electrode scanned between 0.01~3 V (vs. Li/Li+) at a scan rate of 0.1 mV·s-1
Fig.6  Charge-Discharge curves of Co3O4 (a) and Co3O4@CNTs (b) at 50 mA·g-1 current density
Fig.7  Cycle performance for Co3O4 (a) and Co3O4@CNTs (b) electrodes at different rate
Fig.8  Rate capability of Co3O4 and Co3O4@CNTs electrodes
Fig.9  Nyquist plots of Co3O4 and Co3O4@CNTs electrodes
Fig.10  SEM images of Co3O4@CNTs after 100 cycles (a) and after acidification (b)
[1] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles [J]. Chin. J. Eng., 2019, 41: 22
(安富强, 赵洪量, 程志等. 纯电动车用锂离子电池发展现状与研究进展 [J]. 工程科学学报, 2019, 41: 22)
[2] Ai Q, Yang C X, Jiang G D, et al. A novel SnO2@BNNSs@C composite nano-structure and its electrochemical energy storage characteristics [J]. Mater. Eng., 2018, 46(11): 77
(艾青, 杨灿星, 江国栋等. 一种新型SnO2@BNNSs@C纳米复合结构及其电化学储能特性 [J]. 材料工程, 2019, 46(11): 77)
[3] Zhu X Q, Wang Z P, Wang C, et al. An experimental study on overcharge behaviors of lithium-ion power battery with LiNi0.6Co0.2Mn0.2-O2 cathode [J]. Automot. Eng., 2019, 41(5): 582
(朱晓庆, 王震坡, 王聪等. 三元锂离子动力电池过充行为特性实验研究 [J]. 汽车工程, 2019, 41(5): 582)
[4] Chou S L, Wang J Z, Liu H K, et al. Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery [J]. J. Power Sour., 2008, 182: 359
[5] Jan S S. Nurgul S. Shi X Q,et al. Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification [J]. Electrochim. Acta, 2014, 149: 86
[6] He L, Xu J M, Wang Y J, et al. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13-O2 as cathode materials with high coulombic efficiency and improved cyclability for Li-ion batteries [J]. Acta Phys. Chim. Sin., 2017, 33: 1605
(何磊, 徐俊敏, 王永建等. LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13-O2锂离子电池正极材料: 增强的库伦效率和循环性能 [J]. 物理化学学报, 2017, 33: 1605)
[7] Qiu Q Q, Shadike Z, Wang Q C, et al. Improving the electrochemical performance and structural stability of the LiNi0.8Co0.15Al0.05O2 cathode material at high-voltage charging through Ti substitution [J]. ACS Appl. Mater. Interfaces, 2019, 26: 23213
[8] Wang L, Zhao D D, Liu X, et al. Hydrothermal for synthesis of CoO nanoparticles/graphene composite as li-ion battery anodes [J]. Acta Chim. Sin., 2017, 75: 231
(王蕾, 赵冬冬, 刘旭等. 水热法合成氧化亚钴纳米粒子/石墨烯复合材料及其储锂性能研究 [J]. 化学学报, 2017, 75: 231)
[9] Donders M E, Knoops H C M, Kessels W M M, et al. Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition [J]. J. Power Sour., 2012, 203: 72
[10] Zhan L, Wang S Q, Ding L X, et al. Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries [J]. Electrochim. Acta, 2014, 135: 35
[11] Liang H M, Wang Z X, Guo H J, et al. Unique porous yolk-shell structured Co3O4 anode for high performance lithium ion batteries [J]. Ceram. Int., 2017, 43: 11058
[12] Huang G Y, Xu S M, Lu S S, et al. Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries [J]. Electrochim. Acta, 2014, 135: 420
[13] Li T, Li X H, Wang Z X, et al. Synthesis of nanoparticles-assembled Co3O4 microspheres as anodes for Li-ion batteries by spray pyrolysis of CoCl2 solution [J]. Electrochim. Acta, 2016, 209: 456
[14] Wang S F, Zhu Y P, Xu X M, et al. Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries [J]. Energy, 2017, 125: 569
[15] Guo D Y, Pan L, Hao J M, et al. Nanosheets-in-nanotube Co3O4-carbon array design enables stable Li-ion storage [J]. Carbon, 2019, 147: 501
[16] Chi X N, Chang L, Xie D, et al. Hydrothermal preparation of Co3O4/graphene composite as anode material for lithium-ion batteries [J]. Mater. Lett., 2013, 106: 178
[17] Jiang Y, Yan X M, Xiao W, et al. Co3O4-graphene nanoflowers as anode for advanced lithium ion batteries with enhanced rate capability [J]. J. Alloys Compd., 2017, 710: 114
doi: 10.1016/j.jallcom.2017.03.239
[18] Yoon T H, Park Y J. Electrochemical properties of CNTs/Co3O4 blended-anode for rechargeable lithium batteries [J]. Solid State Ion., 2012, 225: 498
[19] Li Y F, Fu Y Y, Liu W B, et al. Hollow Co-Co3O4@CNTs derived from ZIF-67 for lithium ion batteries [J]. J. Alloys Compd., 2019, 784: 439
[20] Foster J M, Huang X, Jiang M, et al. Causes of binder damage in porous battery electrodes and strategies to prevent it [J]. J. Power Sour., 2017, 350: 140
[21] Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano, 2010, 4: 3187
doi: 10.1021/nn100740x pmid: 20455594
[22] Jadhav H S, Rai A K, Lee J Y, et al. Enhanced electrochemical performance of flower-like Co3O4 as an anode material for high performance lithium-ion batteries [J]. Electrochim. Acta, 2014, 146: 270
[23] Sun L N, Deng Q W, Li Y L, et al. CoO-Co3O4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries [J]. Electrochim. Acta, 2017, 241: 252
doi: 10.1016/j.electacta.2017.04.148
[24] Chen F, Yuan Y F, Ye L W, et al. Co3O4 nanocrystalline-assembled mesoporous hollow polyhedron nanocage-in-nanocage as improved performance anode for lithium-ion batteries [J]. Mater. Lett., 2019, 237: 213
[25] Liu Y G, Wan H C, Jiang N, et al. Chemical reduction-induced oxygen deficiency in Co3O4 nanocubes as advanced anodes for lithium ion batteries [J]. Solid State Ion., 2019, 334: 117
[26] Chen W, Nie Y Y, Sun X G, et al. Performance of lithium-ion capacitors using pre-lithiated multi-walled carbon nanotube composite anode [J]. Chin. J. Mater. Res., 2019, 33: 371
(陈炜, 聂艳艳, 孙晓刚等. 预嵌锂多壁碳纳米管的性能 [J]. 材料研究学报, 2019, 33: 371)
[27] Huang R, Li Y F, Song Y H, et al. Facial preparation of N-doped carbon foam supporting Co3O4 nanorod arrays as free-standing lithium-ion batteries’s anode [J]. J. Alloys Compd., 2019, 818: 152839
[28] Marzuki N S, Tai N U, Hassan M F, et al. Enhanced lithium storage in Co3O4/carbon anode for Li-ion batteries [J]. Electrochim. Acta, 2015, 182: 452
[29] Feng K, Park H W, Wang X L, et al. High performance porous anode based on template-free synthesis of Co3O4 nanowires for lithium-ion batteries [J]. Electrochim. Acta, 2014, 139: 145
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!