Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 102-110    DOI: 10.11901/1005.3093.2022.150
ARTICLES Current Issue | Archive | Adv Search |
Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers
ZHANG Kaiyin1, WANG Qiuling1, XIANG Jun2()
1.School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China
2.School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Cite this article: 

ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers. Chinese Journal of Materials Research, 2023, 37(2): 102-110.

Download:  HTML  PDF(5307KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel nanofibrous absorber composed of FeCo alloy and SnO2 has been synthesized through electrospinning coupled with hydrogen reduction. Its structure, morphology, magnetic and electromagnetic properties were characterized by X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer, and the effect of the molar ratio of SnO2 to FeCo on the microwave absorption properties of the composite nanofibers is investigated. It was found that the introduction of an appropriate amount of SnO2 can significantly enhance the microwave absorption properties of FeCo/SnO2 nanofibers as a result of the improved impedance matching, the good synergistic effect between magnetic FeCo alloy and dielectric SnO2, and the enhanced interfacial polarization relaxation, as well as the multiple scattering and reflection caused by the 3D network structure formed by the nanofibers. When the SnO2 molar content in the nanofibers is 20% the minimal reflection loss value of -40.2 dB is obtained at 10.95 GHz for a thin coating of 1.4 mm, and the corresponding effective absorption bandwidth with reflection loss lower than -10.0 dB is about 2.64 GHz (9.75-12.39 GHz). Moreover, when the coating thickness is reduced to 1.0 mm, the effective absorption bandwidth reaches 4.16 GHz (13.84~18.00 GHz). These excellent absorbing performances suggest that the FeCo/SnO2 composite nanofibers designed here could be a promising electromagnetic absorbing material with a strong and broad absorption band.

Key words:  composite      FeCo alloys      SnO2      nanofibers      microwave absorption      electrospinning     
Received:  17 March 2022     
ZTFLH:  TB333  
Fund: Natural Science Foundation of Fujian Province, China(2020J01393);National Natural Science Foundation of China(51271059);Talent Funding of Wuyi University(YJ202115);Talent Funding of Wuyi University(YJ202116)
About author:  XIANG Jun, Tel: 15952808679, E-mail: jxiang@just.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.150     OR     https://www.cjmr.org/EN/Y2023/V37/I2/102

Fig.1  XRD patterns of the prepared FeCo/SnO2 composite nanofibers
Fig.2  FESEM images of FCSO0 (a), FCSO1 (b), and FCSO2 (c)
Fig.3  Room-temperature magnetic hysteresis loops of the FeCo/SnO2 composite nanofibers
Fig.4  Frequency dependence of the complex permittivity (a), dielectric loss tangent (b), complex permeability (c) and magnetic loss tangent (d) for the FeCo/SnO2 composite nanofibers
Fig.5  Cole-Cole curves of FCSO0 (a), FCSO1 (b) and FCSO2 (c); (d) μ″(μ' )–2f–1 values of the FeCo/SnO2 composite nanofibers
Fig.6  RL curves and relationships between the matching thickness and RL peak frequency under λ/4 condition for FCSO0 (a, d), FCSO1 (b, e) and (c, f) FCSO2
SampleLoading /%, mass fractionRLmin (dB)/ Thickness (mm)EABmax (GHz)/Thickness (mm)Ref.
FeCo@SnO2 nanosheets70-49.1 / 1.7511.7 / 1.7525
Flower-like ZnO@Ni60-48.0/2.05.3/1.526
Co@SiO275-15.0/2.894.5 / 2.8927
Fe/ZnO50-48.28 / 1.595.1 / 1.928
Ni@SnO250-50.2 / 1.54.8 / 1.729
FeCo@TiO2@Fe3O470-35.4 / 2.53.0 / 2.530
FCSO150-40.2 / 1.44.16 / 1.0This work
Table 1  Absorption properties of some ferromagnetic metal/dielectric oxide composites
Fig.7  Attenuation constants (a) and impedance matching rations (b) of the FeCo/SnO2 composite nanofibers
1 Green M, Chen X. Recent progress of nanomaterials for microwave absorption [J]. J. Materiomics. 2019, 5: 503
doi: 10.1016/j.jmat.2019.07.003
2 Kong J, Gao H, Li Y, et al. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials [J]. Mater. Rep., 2020, 34(5): 09055
孔 静, 高 鸿, 李 岩 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展 [J]. 材料导报, 2020, 34(5): 09055
3 Lv T, Zhang C W, Liu J, et al. Research progress in metamaterial absorber [J]. Acta. Mater. Compos. Sin., 2021, 38(1): 25
吕 通, 张辰威, 刘 甲 等. 吸波材料研究进展 [J]. 复合材料学报, 2021, 38(1): 25
4 Liu J L, Chen P, Xu D W, et al. Preparation and microwave absorption properties of magnetic porous RGO@Ni composites [J]. Chin. J. Mater. Res., 2020, 34(9): 641
doi: 10.11901/1005.3093.2020.202
刘佳良, 陈 平, 徐东卫 等. 磁性多孔RGO@Ni复合材料的制备和吸波性能 [J]. 材料研究学报, 2020, 34(9): 641
doi: 10.11901/1005.3093.2020.202
5 Chen Z W, Fan X M, Huang X X, et al. Research progress and prospestion on high-temperature wave-absorbing ceramic materials [J]. Adv. Ceram., 2020, 41(1-2): 1
陈政伟, 范晓孟, 黄小萧 等. 高温吸波陶瓷材料研究进展[J]. 现代技术陶瓷, 2020, 41(1-2): 1
6 Xiang J, Li J L, Zhang X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers [J]. J.Mater.Chem.A., 2014, 2: 16905
7 Quan B, Liang X H, Xu G Y, et al. A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation [J]. New J. Chem., 2017, 41: 1259
doi: 10.1039/C6NJ03052A
8 Zhu X Y, Qiu H F, Chen P. Preparation and electromagnetic wave absorbing properties of composites of cobalt coated graphitic carbon nitride Co@CNTs [J]. Chin. J. Mater. Res., 2021, 35(11): 811
doi: 10.11901/1005.3093.2021.473
朱晓宇, 邱红芳, 陈 平. Co@CNT复合电磁波吸收剂的制备及其吸波性能 [J]. 材料研究学报, 2021, 35(11): 811
doi: 10.11901/1005.3093.2021.473
9 Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res., 2018, 32(3): 161
doi: 10.11901/1005.3093.2017.339
褚海荣, 陈 平, 于 祺 等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32(3): 161
doi: 10.11901/1005.3093.2017.339
10 Wang Y, Gao X, Lin C H, et al. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber [J]. J. Alloy. Comp., 2019, 785: 765
doi: 10.1016/j.jallcom.2019.01.271
11 Liu D W, Qiang R, Du Y C, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption [J]. J. Colloid. Interf. Sci., 2018, 514: 10
doi: S0021-9797(17)31403-0 pmid: 29227802
12 Zhou C H, Wu C, Yan M. A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption [J]. Chem. Eng. J., 2019, 370: 988
doi: 10.1016/j.cej.2019.03.295
13 Yang B, Wu Y, Li X P, et al. Surface-oxidized FeCo/carbon nanotubes nanorods for lightweight and efficient microwave absorbers [J]. Mater. Design., 2017, 136: 13
14 Song W Z. Design, preparation and microwave absorbing properties of FeCo/ZnO Composites [D]. Zhengzhou: Zhengzhou University of Aeronautics, 2019
宋文正. FeCo/ZnO复合材料的设计制备及吸波性能研究 [D]. 郑州: 郑州航空工业管理学院, 2019
15 Xu Z J, Guo J, Du B S, et al. Influence of microstructure on waves resonance of FeCo/TiO2 nanocomposites [J]. J. Funct. Mater., 2016, 47(): 148
徐志洁, 郭 杰, 杜宝盛 等. 微观结构对FeCo/TiO2纳米复合材料微波共振的影响 [J]. 功能材料, 2016, 47(): 148
16 Zhou X W, Wang Z G, Wang Q, et al. Preparation and microwave absorbing properties of graphene/SnO2 nanofiber hybrids [J]. 2019, Met. Funct. Mater., 2019, 26(2): 11
周小文, 王志国, 王 倩 等. 石墨烯/SnO2 纳米纤维复合材料的制备及吸波性能的研究 [J]. 金属功能材料, 2019, 26(2): 11
17 Bokuiaeva A O, Vorokh A S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder [J]. J. Phys.: Conf. Ser., 2019, 1410: 012057
18 Li D W, Du Y C, Li Z N, et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties [J]. J. Mater. Chem. C., 2018, 6: 9615
doi: 10.1039/C8TC02931H
19 Zhang X, Rao Y, Guo J, et al. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption[J]. Carbon, 2016, 96: 972
doi: 10.1016/j.carbon.2015.09.087
20 Ma J, Li J G, Ni X, et al. Microwave resonance in Fe/SiO2 nanocomposite [J]. Appl. Phys. Lett., 2009, 95:102505
doi: 10.1063/1.3224883
21 Wang H, Daiy Y, Gong W J, et al. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances [J]. Appl. Phys. Lett., 2013, 102: 223113
doi: 10.1063/1.4809675
22 Aharoni A. Exchange resonance modes in a ferromagnetic sphere [J]. J. Appl. Phys., 1991, 69: 7762
doi: 10.1063/1.347502
23 Green M, Tran T V, Chen X. Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery [J]. Adv. Mater. Interfaces., 2020, 7(18): 2000658
doi: 10.1002/admi.202000658
24 Huang X G, Zhang J, Lai M, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers [J]. J. Alloy. Compd., 2015, 627: 367
doi: 10.1016/j.jallcom.2014.11.235
25 Lv H P, Wu C, Qin F X, et al. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption [J]. J. Mat. Sci. Tech., 2021, 90: 1
26 Wang G Z, Peng X G, Yu L, et al. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition [J]. J. Mater. Chem. A, 2015, 3: 2734
doi: 10.1039/C4TA06053A
27 Yuan Y, Liu C, Jiang J T, et al. Study on properties of Co/SiO composite particles of micron scale [J]. Aerospace Shanghai, 2018, 35(1): 75
袁 勇, 刘 超, 姜建堂, 甄 良. 微米级Co/SiO2复合颗粒性能研究 [J]. 上海航天, 2018, 35(1): 75
28 Liu Q, Dai J X, Hu F, et al. Core-shell structured Fe/ZnO composite with superior electromagnetic wave absorption performance [J]. Ceram. Inter., 2021, 47: 14506
doi: 10.1016/j.ceramint.2021.02.030
29 Zhao B, Guo X, Zhao W, et al. Yolk-shell Ni@ SnO2 composites with a designable interspace to improve electromagnetic wave absorption properties [J]. ACS Appl. Mater. Interfaces, 2016, 8: 28917
doi: 10.1021/acsami.6b10886
30 Chen P A, Wang X, Zhu Y L, et al. Antioxidation and microwave absorption of flattened FeCo@TiO2@Fe3O4 core-shell composites [J]. J Chin Ceram Soc, 2021, 49(10): 2203
陈平安, 王 昕, 朱颖丽. 扁平FeCo@TiO2@Fe3O4核壳结构抗氧化和微波吸收性能 [J]. 硅酸盐学报, 2021, 49(10): 2203
31 Guan G G, Gao G J, Xiang J, et al. CoFe2/BaTiO3 hybrid nanofibers for microwave absorption [J]. ACS Appl. Nano Mater., 2020, 3: 8424
doi: 10.1021/acsanm.0c01855
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!