|
|
Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers |
ZHANG Kaiyin1, WANG Qiuling1, XIANG Jun2( ) |
1.School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China 2.School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
|
Cite this article:
ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers. Chinese Journal of Materials Research, 2023, 37(2): 102-110.
|
Abstract A novel nanofibrous absorber composed of FeCo alloy and SnO2 has been synthesized through electrospinning coupled with hydrogen reduction. Its structure, morphology, magnetic and electromagnetic properties were characterized by X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer, and the effect of the molar ratio of SnO2 to FeCo on the microwave absorption properties of the composite nanofibers is investigated. It was found that the introduction of an appropriate amount of SnO2 can significantly enhance the microwave absorption properties of FeCo/SnO2 nanofibers as a result of the improved impedance matching, the good synergistic effect between magnetic FeCo alloy and dielectric SnO2, and the enhanced interfacial polarization relaxation, as well as the multiple scattering and reflection caused by the 3D network structure formed by the nanofibers. When the SnO2 molar content in the nanofibers is 20% the minimal reflection loss value of -40.2 dB is obtained at 10.95 GHz for a thin coating of 1.4 mm, and the corresponding effective absorption bandwidth with reflection loss lower than -10.0 dB is about 2.64 GHz (9.75-12.39 GHz). Moreover, when the coating thickness is reduced to 1.0 mm, the effective absorption bandwidth reaches 4.16 GHz (13.84~18.00 GHz). These excellent absorbing performances suggest that the FeCo/SnO2 composite nanofibers designed here could be a promising electromagnetic absorbing material with a strong and broad absorption band.
|
Received: 17 March 2022
|
|
Fund: Natural Science Foundation of Fujian Province, China(2020J01393);National Natural Science Foundation of China(51271059);Talent Funding of Wuyi University(YJ202115);Talent Funding of Wuyi University(YJ202116) |
About author: XIANG Jun, Tel: 15952808679, E-mail: jxiang@just.edu.cn
|
1 |
Green M, Chen X. Recent progress of nanomaterials for microwave absorption [J]. J. Materiomics. 2019, 5: 503
doi: 10.1016/j.jmat.2019.07.003
|
2 |
Kong J, Gao H, Li Y, et al. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials [J]. Mater. Rep., 2020, 34(5): 09055
|
|
孔 静, 高 鸿, 李 岩 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展 [J]. 材料导报, 2020, 34(5): 09055
|
3 |
Lv T, Zhang C W, Liu J, et al. Research progress in metamaterial absorber [J]. Acta. Mater. Compos. Sin., 2021, 38(1): 25
|
|
吕 通, 张辰威, 刘 甲 等. 吸波材料研究进展 [J]. 复合材料学报, 2021, 38(1): 25
|
4 |
Liu J L, Chen P, Xu D W, et al. Preparation and microwave absorption properties of magnetic porous RGO@Ni composites [J]. Chin. J. Mater. Res., 2020, 34(9): 641
doi: 10.11901/1005.3093.2020.202
|
|
刘佳良, 陈 平, 徐东卫 等. 磁性多孔RGO@Ni复合材料的制备和吸波性能 [J]. 材料研究学报, 2020, 34(9): 641
doi: 10.11901/1005.3093.2020.202
|
5 |
Chen Z W, Fan X M, Huang X X, et al. Research progress and prospestion on high-temperature wave-absorbing ceramic materials [J]. Adv. Ceram., 2020, 41(1-2): 1
|
|
陈政伟, 范晓孟, 黄小萧 等. 高温吸波陶瓷材料研究进展[J]. 现代技术陶瓷, 2020, 41(1-2): 1
|
6 |
Xiang J, Li J L, Zhang X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers [J]. J.Mater.Chem.A., 2014, 2: 16905
|
7 |
Quan B, Liang X H, Xu G Y, et al. A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation [J]. New J. Chem., 2017, 41: 1259
doi: 10.1039/C6NJ03052A
|
8 |
Zhu X Y, Qiu H F, Chen P. Preparation and electromagnetic wave absorbing properties of composites of cobalt coated graphitic carbon nitride Co@CNTs [J]. Chin. J. Mater. Res., 2021, 35(11): 811
doi: 10.11901/1005.3093.2021.473
|
|
朱晓宇, 邱红芳, 陈 平. Co@CNT复合电磁波吸收剂的制备及其吸波性能 [J]. 材料研究学报, 2021, 35(11): 811
doi: 10.11901/1005.3093.2021.473
|
9 |
Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res., 2018, 32(3): 161
doi: 10.11901/1005.3093.2017.339
|
|
褚海荣, 陈 平, 于 祺 等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32(3): 161
doi: 10.11901/1005.3093.2017.339
|
10 |
Wang Y, Gao X, Lin C H, et al. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber [J]. J. Alloy. Comp., 2019, 785: 765
doi: 10.1016/j.jallcom.2019.01.271
|
11 |
Liu D W, Qiang R, Du Y C, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption [J]. J. Colloid. Interf. Sci., 2018, 514: 10
doi: S0021-9797(17)31403-0
pmid: 29227802
|
12 |
Zhou C H, Wu C, Yan M. A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption [J]. Chem. Eng. J., 2019, 370: 988
doi: 10.1016/j.cej.2019.03.295
|
13 |
Yang B, Wu Y, Li X P, et al. Surface-oxidized FeCo/carbon nanotubes nanorods for lightweight and efficient microwave absorbers [J]. Mater. Design., 2017, 136: 13
|
14 |
Song W Z. Design, preparation and microwave absorbing properties of FeCo/ZnO Composites [D]. Zhengzhou: Zhengzhou University of Aeronautics, 2019
|
|
宋文正. FeCo/ZnO复合材料的设计制备及吸波性能研究 [D]. 郑州: 郑州航空工业管理学院, 2019
|
15 |
Xu Z J, Guo J, Du B S, et al. Influence of microstructure on waves resonance of FeCo/TiO2 nanocomposites [J]. J. Funct. Mater., 2016, 47(): 148
|
|
徐志洁, 郭 杰, 杜宝盛 等. 微观结构对FeCo/TiO2纳米复合材料微波共振的影响 [J]. 功能材料, 2016, 47(): 148
|
16 |
Zhou X W, Wang Z G, Wang Q, et al. Preparation and microwave absorbing properties of graphene/SnO2 nanofiber hybrids [J]. 2019, Met. Funct. Mater., 2019, 26(2): 11
|
|
周小文, 王志国, 王 倩 等. 石墨烯/SnO2 纳米纤维复合材料的制备及吸波性能的研究 [J]. 金属功能材料, 2019, 26(2): 11
|
17 |
Bokuiaeva A O, Vorokh A S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder [J]. J. Phys.: Conf. Ser., 2019, 1410: 012057
|
18 |
Li D W, Du Y C, Li Z N, et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties [J]. J. Mater. Chem. C., 2018, 6: 9615
doi: 10.1039/C8TC02931H
|
19 |
Zhang X, Rao Y, Guo J, et al. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption[J]. Carbon, 2016, 96: 972
doi: 10.1016/j.carbon.2015.09.087
|
20 |
Ma J, Li J G, Ni X, et al. Microwave resonance in Fe/SiO2 nanocomposite [J]. Appl. Phys. Lett., 2009, 95:102505
doi: 10.1063/1.3224883
|
21 |
Wang H, Daiy Y, Gong W J, et al. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances [J]. Appl. Phys. Lett., 2013, 102: 223113
doi: 10.1063/1.4809675
|
22 |
Aharoni A. Exchange resonance modes in a ferromagnetic sphere [J]. J. Appl. Phys., 1991, 69: 7762
doi: 10.1063/1.347502
|
23 |
Green M, Tran T V, Chen X. Obtaining strong, broadband microwave absorption of polyaniline through data-driven materials discovery [J]. Adv. Mater. Interfaces., 2020, 7(18): 2000658
doi: 10.1002/admi.202000658
|
24 |
Huang X G, Zhang J, Lai M, et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers [J]. J. Alloy. Compd., 2015, 627: 367
doi: 10.1016/j.jallcom.2014.11.235
|
25 |
Lv H P, Wu C, Qin F X, et al. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption [J]. J. Mat. Sci. Tech., 2021, 90: 1
|
26 |
Wang G Z, Peng X G, Yu L, et al. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition [J]. J. Mater. Chem. A, 2015, 3: 2734
doi: 10.1039/C4TA06053A
|
27 |
Yuan Y, Liu C, Jiang J T, et al. Study on properties of Co/SiO2 composite particles of micron scale [J]. Aerospace Shanghai, 2018, 35(1): 75
|
|
袁 勇, 刘 超, 姜建堂, 甄 良. 微米级Co/SiO2复合颗粒性能研究 [J]. 上海航天, 2018, 35(1): 75
|
28 |
Liu Q, Dai J X, Hu F, et al. Core-shell structured Fe/ZnO composite with superior electromagnetic wave absorption performance [J]. Ceram. Inter., 2021, 47: 14506
doi: 10.1016/j.ceramint.2021.02.030
|
29 |
Zhao B, Guo X, Zhao W, et al. Yolk-shell Ni@ SnO2 composites with a designable interspace to improve electromagnetic wave absorption properties [J]. ACS Appl. Mater. Interfaces, 2016, 8: 28917
doi: 10.1021/acsami.6b10886
|
30 |
Chen P A, Wang X, Zhu Y L, et al. Antioxidation and microwave absorption of flattened FeCo@TiO2@Fe3O4 core-shell composites [J]. J Chin Ceram Soc, 2021, 49(10): 2203
|
|
陈平安, 王 昕, 朱颖丽. 扁平FeCo@TiO2@Fe3O4核壳结构抗氧化和微波吸收性能 [J]. 硅酸盐学报, 2021, 49(10): 2203
|
31 |
Guan G G, Gao G J, Xiang J, et al. CoFe2/BaTiO3 hybrid nanofibers for microwave absorption [J]. ACS Appl. Nano Mater., 2020, 3: 8424
doi: 10.1021/acsanm.0c01855
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|