Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 591-598    DOI: 10.11901/1005.3093.2019.604
ARTICLES Current Issue | Archive | Adv Search |
One Step Hydrothermal Preparation of SnO2@C Composite and Its Lithium Storage Performance
LI Lingfang1, ZENG Bin1, YUAN Zhipeng2, FAN Changling2()
1 College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Cite this article: 

LI Lingfang, ZENG Bin, YUAN Zhipeng, FAN Changling. One Step Hydrothermal Preparation of SnO2@C Composite and Its Lithium Storage Performance. Chinese Journal of Materials Research, 2020, 34(8): 591-598.

Download:  HTML  PDF(7663KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two kinds of SnO2@C composite were successfully prepared by a facile and cost-effective method through one-pot hydrothermal treatment of a mixture of Sn4+, and different carbohydrates (glucose and starch). The composition and microstructure of resultants were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), N2 Adsorption-desorption method and Transmission Electron Microscope (TEM). The electrochemical performance as anode material for lithium-ion batteries was confirmed by galvanostatic charge-discharge test and Cyclic Voltammetry (CV) method. Results show that the pyrolytic carbon derived from carbohydrate precursors forms a stable composite structure with 4~5 nm SnO2 nanocrystals. The large volume variation of SnO2 during the Li+ insertion-extraction process is effectively alleviated by the buffering effect of carbon matrix. Whatsmore, small SnO2 nanoparticles can also effectively reduce this volume change, improving the electrode structural stability and electrochemical properties. Because the degree of order of glucose pyrolytic carbon is higher than that of starch pyrolytic carbon, correspondingly its composite shows better cycle and rate performance, which can stably release >400 mAh/g specific capacity at high current density of 2 A/g.

Key words:  composite      tin dioxide      pyrolytic hard carbon      nanoparticles      anode of lithium ion batteries     
Received:  30 December 2019     
ZTFLH:  TM912.9  
Fund: National Natural Science Foundation of China(51802096);National Natural Science Foundation of China(51672079);National Natural Science Foundation of China(51972104);Natural Science Foundation of Hunan Province(2020JJ4449)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.604     OR     https://www.cjmr.org/EN/Y2020/V34/I8/591

Fig.1  Capacities and cycle numbers of SnO2-based materials as anodes for LIBs reported in the recent literature[20]
Fig.2  XRD patterns of TOC-G and TOC-S
Fig.3  FTIR patterns (a), N2 adsorption/desorption curve and pore distribution (b)
Fig.4  TEM and HRTEM images of TOC-G (a) and TOC-S (b)
Fig.5  Cycle (a) and rate (b) performance of samples
Fig.6  Charge/discharge curve of TOC-G (a) and TOC-S (b), sketch map of Li+ insertion and absorption in carbon matrix (c)
Fig.7  Cyclic voltammetry curves (the first three cycles and the 100th cycle) (a) TOC-G, (b) TOC-S
[1] Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behavior of mop nanoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2019, 33: 65
(肖雅丹, 靳晓哲, 黄昊等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33: 65)
doi: 10.11901/1005.3093.2017.793
[2] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material [J]. Science, 1997, 276: 1395
doi: 10.1126/science.276.5317.1395
[3] Wang C, Zhou Y, Ge M Y, et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity [J]. J. Am. Chem. Soc., 2010, 132: 46
doi: 10.1021/ja909321d pmid: 20000321
[4] Zhang L, Zhang G Q, Wu H B, et al. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage [J]. Adv. Mater., 2013, 25: 2589
pmid: 23553828
[5] Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode [J]. Science, 2010, 330: 1515
doi: 10.1126/science.1195628 pmid: 21148385
[6] Wang W C, Li P H, Fu Y B, et al. The preparation of double-void-space SnO2/carbon composite as high-capacity anode materials for lithium-ion batteries [J]. J. Power Sources, 2013, 238: 464
[7] Zhao Y, Wei C, Sun S N, Wang L P, et al. Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage [J]. Adv. Sci., 2015, 2: 1500097
[8] Ju H S, Hong Y J, Cho J S, et al. Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries [J]. Carbon, 2016, 100: 137
[9] Zhang X Q, Huang X X, Geng X, et al. Flexible anodes with carbonized cotton covered by graphene/SnO2 for advanced lithium-ion batteries [J]. J. Electroanal. Chem., 2017, 794: 15
[10] Lu J, Peng Q, Li Y D. Synthesis of iron oxide-tin oxide-carbon composite nanobelts and their applications in lithium-ion batteries [J]. Chin. Sci. Bull., 2013, 58: 3213
(陆君, 彭卿, 李亚栋. 氧化铁-氧化锡-碳复合纳米带的合成及其在锂电池中的应用 [J]. 科学通报, 2013, 58: 3213)
[11] Yang Z X, Du G D, Guo Z P, et al. Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties [J]. J. Mater. Res., 2010, 25: 1516
[12] Lin Y S, Duh J G, Hung M H. Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery [J]. J. Phys. Chem., 2010, 114C: 13136
[13] Li H, Zhang B, Ou X, et al. Cover feature: core-shell structure of SnO2@c/PEDOT: PSS microspheres with dual protection layers for enhanced lithium storage performance (ChemElectroChem 8/2019) [J]. ChemElectroChem, 2019, 6: 2121
doi: 10.1002/celc.v6.8
[14] Wang H K, Wang J K, Cao D X, et al. Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance [J]. J. Mater. Chem., 2017, 5A: 6817
[15] Li S, Yang Z X, Guo T L, et al. Composite Nano-materials with 1-D core/shell architecture synthesized in one-pot hydrothemal method and its Li-storage properties [J]. Chin. J. Vac. Sci. Technnol., 2013, 33: 1260
(李松, 杨尊先, 郭太良等. 一步水热法合成CNTs/SnO2@C一维壳核结构复合纳米材料及其锂存储特性研究 [J]. 真空科学与技术学报, 2013, 33: 1260)
[16] Wu P, Zhang D H, Yu J, et al. CNTs@SnO2@C coaxial nanocables with highly reversible lithium storage [J]. J. Phys. Chem., 2010, 114C: 22535
[17] Yu Z J, Wang Y L, Deng H G, et al. Synthesis and electrochemical performance of SnO2/Graphene anode material for lithium ion batteries [J]. J. Inorg. Mater., 2013, 28: 515
(虞祯君, 王艳莉, 邓洪贵等. SnO2/石墨烯锂离子电池负极材料的制备及其电化学行为研究 [J]. 无机材料学报, 2013, 28: 515)
[18] Wang X Y, Zhou X F, Yao K, et al. A SnO2/graphene composite as a high stability electrode for lithium ion batteries [J]. Carbon, 2011, 49: 133
doi: 10.1016/j.carbon.2010.08.052
[19] Dahn J R, Xing W, Gao Y. The “falling cards model” for the structure of microporous carbons [J]. Carbon, 1997, 35: 825
[20] Zhao S Q, Sewell C D, Liu R P, et al. SnO2 as advanced anode of alkali-ion batteries: inhibiting sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility [J]. Adv. Energy Mater. 2020, 10: 1902657-98
[21] Dirican M, Lu Y, Ge Y Q, et al. Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material [J]. ACS Appl. Mater. Interfaces, 2015, 7: 18387
doi: 10.1021/acsami.5b04338 pmid: 26252051
[22] Béguin F, Chevallier F, Vix C, et al. A better understanding of the irreversible lithium insertion mechanisms in disordered carbons [J]. J. Phys. Chem. Solids, 2004, 65: 211
[23] Wang L Y, Leconte Y, Feng Z X, et al. Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties [J]. Adv. Mater., 2017, 29: 1603286
[24] Zhang Z Y, Wang L, Xiao J, et al. One-pot synthesis of three-dimensional graphene/carbon nanotube/SnO2 hybrid architectures with enhanced lithium storage properties [J]. ACS Appl. Mater. Interfaces, 2015, 7: 17963
[25] Xu C H, Sun J, Gao L. Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties [J]. Nanoscale, 2012, 4: 5425
doi: 10.1039/c2nr31357j pmid: 22832436
[26] Wang L, Wang D, Dong Z H, et al. Interface chemistry engineering for stable cycling of reduced go/SnO2 nanocomposites for lithium ion battery [J]. Nano Lett., 2013, 13: 1711
doi: 10.1021/nl400269d pmid: 23477450
[27] Vinayan B P, Ramaprabhu S. Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications [J]. J. Mater. Chem., 2013, 1A: 3865
[28] Li L F, Fan C L, Zeng B, et al. Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose [J]. Mater. Chem. Phys., 2020, 242: 122380
[29] Lou X W, Deng D, Lee J Y, et al. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties [J]. Chem. Mater., 2008, 20: 6562
[30] Wang H Q, Zhang X H, Wen J B, et al. Preparation of spherical Sn/SnO2/porous carbon composite materials as anode material for lithium-ion batteries [J]. J Mater. Eng. Perform., 2015, 24: 1856
[31] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteriess [J]. J. Electrochem. Soc., 2000, 147: 1271
[32] Wang X, Cao X Q, Bourgeois L, et al. N-doped graphene-SnO2 sandwich paper for high‐performance lithium-ion batteries [J]. Adv. Funct. Mater., 2012, 22: 2682
[33] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano Lett., 2009, 9: 72
pmid: 19090687
[34] Zhang H X, Feng C, Zhai Y C, et al. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries [J]. Adv. Mater., 2009, 21: 2299
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!