Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (9): 705-711    DOI: 10.11901/1005.3093.2019.580
ARTICLES Current Issue | Archive | Adv Search |
Effect of Double Quenching on Microstructure and Impact Toughness of a High Strength Low Alloy Steel
CHEN Gang1,2, LUO Xiaobing1(), CHAI Feng1, YANG Caifu1, ZHANG Zhengyan1, YANG Zhigang2
1. Department of Structure Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article: 

CHEN Gang, LUO Xiaobing, CHAI Feng, YANG Caifu, ZHANG Zhengyan, YANG Zhigang. Effect of Double Quenching on Microstructure and Impact Toughness of a High Strength Low Alloy Steel. Chinese Journal of Materials Research, 2020, 34(9): 705-711.

Download:  HTML  PDF(15409KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of double quenching and tempering (DQT) treatment as well as the conventional quenching and tempering (CQT) treatment on the microstructure and impact toughness of a high strength low alloy steel were investigated. The results show that compared with the CQT treatment, the impact toughness improved a lot, while the yield strength just slightly decreased for the DQT treated steel. These changes were characterized by optical microscope (OM), scanning electron microscope (SEM), electron back scatter diffraction (EBSD) and transmission electron microscope (TEM). It follows that in comparison to the CQT treatment, the DQT treatment led to a finer microstructure, namely, the size of prior austenite grain and the effective grain were refined, and the density of the high angle misorientation was increased, while the frequency of deflection for the crack propagation for the DQT treated steel was much higher than the CQT treated one. The superior toughness of the DQT treated steel can be attributed to the finer microstructure.

Key words:  metallic materials      HSLA      double quenching      toughness      high-angle boundary      crack propagation     
Received:  12 December 2019     
ZTFLH:  TG142.1  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.580     OR     https://www.cjmr.org/EN/Y2020/V34/I9/705

Fig.1  Diagram of traditional heat treatment process and double quenching heat treatment process
ProcessesUltimate tensile strengtd/MPa

Yield strengtd

/MPa

Elongation to failure/%Reduction area/%-120℃ Impact energy/JPercentage of ductile fracture surface/%
CQT74070022.58118658
DQT70766222.58326689
Table 1  The mechanical properties of the investigated steel by different heat treatments
Fig.2  Impact energy and percentage of ductile fracture surface-temperature curves for the specimens treated by DQT and CQT
Fig.3  SEM micrographs showing the tempering microstructure: (a) DQT and (b) CQT
Fig.4  Prior austenite grain size after different heat treatment: (a) DQT and (b) CQT
Fig.5  EBSD grain boundary distribution maps of specimens treated by (a) DQT and (b) CQT (Where black and red lines represent the high misorientation angle boundaries (≥15°) and low misorientation angle boundaries (2°~15°), respectively) and (c) the total grain boundary density of specimens treated by DQT and CQT ranged 0°~60°
Fig.6  TEM images of nanometer copper precipitates (a)、(b) CQT; (c)、(d) DQT
Fig.7  SEM fractographs of the Charpy impact specimens in (a) DQT and (b) CQT conditions
Fig.8  SEM images of the main crack propagation of specimens in (a) DQT and (b) CQT conditions
Fig.9  SEM images of (a) secondary crack propagation and (b) main crack propagation for impact specimens treated by DQT process
Fig.10  EBSD image showing cleavage crack propaga- tion of the impact specimen treated by DQT process (black lines denote high angle grain boundaries)
[1] Yang C F,Zhang Y Q. New generation of HSLA steel for naval structures [J]. Iron and Steel, 2001, 36(11): 50
(杨才福, 张永权. 新一代易焊接高强度高韧性船体钢的研究 [J]. 钢铁, 2001, 36(11): 50)
[2] Llewellyn D T.Copper in steels [J]. Iron making and Steel making, 1996, 22(1): 25
[3] Mujahid M,Lis A K,Garcia C I,et al. HSLA-100 steels: influence of aging heat treatment on microstructure and properties [J]. Journal of Materials Engineering and Performance, 1998, 7(2): 247
[4] Luo X B, Yang C F, Chai F. Effect of intercritical quenching on low temperature toughness of high strength ship hull steel [J]. Heat Treatment of Metals, 2012, 37(9): 71
(罗小兵, 杨才福, 柴锋. 两相区二次淬火对高强度船体钢低温韧性的影响 [J]. 金属热处理, 2012, 37(9): 71)
[5] Zhang C, Wang Q, Ren J, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25Cr-Mo48V steel [J]. Materials Science & Engineering A, 2012, 534: 339
[6] Kamada Y, Ohnishi K, Bessyo K. Effect of double-quench processing on toughness of heavy-gauge ultrahigh strength steel plate [J]. Journal of Materials Science Letters, 1991, 10(10): 598
[7] Lee K O, Hong S K, Kang Y K, et al. Grain refinement in bearing steels using a double-quenching heat-treatment process [J]. International Journal of Automotive Technology, 2009, 10(6): 697
[8] Sarikaya M, Steinberg B G, Thomas G. Optimization of Fe/Cr/C base structural Steels for improved strength and toughness [J]. Metallurgical Transactions A, 1982, 13(12): 2227
[9] Sanij M H K, Banadkouki S S G, Mashreghi A R, et al. The effect of single and double quenching and tempering heat treatments on the microstructure and mechanical properties of AISI 4140 steel [J]. Materials & Design, 2012, 42(10): 339
[10] Chang E., Chang C. Y., Liu C. D.. The effects of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni-Cr-Mo-V steel [J]. Metallurgical & Materials Transactions A, 25(3): 545
[11] Furuhara T, Kikumoto K, Saito H, et al. Phase Transformation from Fine-grained Austenite [J]. Isij International, 2008, 48(8): 1038
[12] Dere E. G., Sharma H., Petrov R. H., Sietsma J., Offerman S. E., Effect of niobium and grain boundary density on the fire resistence of Fe-C-Mn steel [J]. Scripta Mater., 69, 651(2013)
[13] Wang Chunfang, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scripta Mater. 58.6(2008): 492
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!