Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (9): 712-720    DOI: 10.11901/1005.3093.2020.065
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment
HUANG Anran1, ZHANG Wei2,3, WANG Xuelin1,4, SHANG Chengjia1(), FAN Jiajie1
1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
2. Central Iron & Steel Research Institute, Beijing 100081, China
3. CITIC Metal Co. Ltd., Beijing 100004, China
4. Chongqing Tongliang High-tech Industrial Development Zone Management Committee, Chongqing 402560, China
Cite this article: 

HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment. Chinese Journal of Materials Research, 2020, 34(9): 712-720.

Download:  HTML  PDF(14236KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to simulate the nitriding corrosion behavior of ferritic stainless steels in selective catalytic reduction (SCR) system of commercial vehicle, urea corrosion tests were carried out on three ferritic stainless steels (436L, 439M and 441) used in exhaust system of commercial vehicles. The influences of alloy composition and inclusions on high temperature urea corrosion resistance of ferritic stainless steels were investigated. The results show that under the synergistic effect of high temperature fatigue and oxidation, the high temperature and high nitrogen environment results in the rapid precipitation of chromium nitride particles at grain boundaris and in the local area of the ferritic stainless steels, resulting in chromium depletion. As 436L and 441 ferritic stainless steels contain higher Nb and Mo, thy present significantly higher resistance to high temperature urea corrosion rather than 439M. Moreover, due to the fine dispersion of inclusions in 436L and 441 stainless steels, the probability of nucleation and precipitation of chromium nitride on inclusions is also reduced, which is another cause for improving the resistance to high temperature urea corrosion of the relevant steels.

Key words:  materials failure and protection      high temperature urea corrosion      intergranular corrosion      EDS      ferritic stainless steels      nitriding mechanism      inclusion     
Received:  02 March 2020     
ZTFLH:  TG142.71  
Fund: CITIC Metal Co. Ltd(2018-D114/M611)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.065     OR     https://www.cjmr.org/EN/Y2020/V34/I9/712

SteelsCSiMnPSCrNiMoAlNbTi
439M0.01030.3670.1330.0150.00117.5930.099-0.0650.1730.1961
436L0.00990.4000.1640.0160.00117.3800.0931.0050.0360.1110.1609
4410.01040.3890.2350.0160.00118.0010.099-0.0370.4130.1561
Table 1  Chemical composition of three test ferritic stainless steels (mass fraction, %)
Fig.1  Schematic diagram of experimental device
Fig.2  Thermal cycle process
Fig.3  SEM cross-sectional images of the oxidation products formed on three ferritic stainless steel samples: (a) 439M, (b) 436L and (c) 441
Fig.4  SEM images of internal corrosion layers of three ferritic stainless steel samples: (a) 439M, (b) 436L and (c) 441
Fig.5  Thicknesses of residual oxide layer and nitriding layer of three stainless steels: (a) 439M, (b) 436L, (c) 441
Fig.6  Total corrosion depths of three stainless steels
Fig.7  EDS results of 436L stainless steel: (a) secondary electron image and map scanning of (b) Cr, (c) Fe, (d) O, (e) C, (f) N
Fig.8  EDS results at the grain boundaries of 436L stainless steel: (a) secondary electron image, map scanning of (b) Cr, (c) N, (d) O, (e) C
Fig.9  EDS element area profiles of inclusion in (a) nitriding zone and (b) 436L steel substrate
Fig.10  Distributions of inclusions in three stainless steels: (a) 439M, (b) 441, (c) 436L
Fig.11  Statistical chart of inclusions sizes in three ferritic stainless steels
[1] Dong S J, Wang N. Research on high temperature urea cyclic corrosion resistance of stainless steel for SCR post processor [J]. Automob. Technol. Mater., 2017, (5): 41
(董善举, 王楠. SCR后处理器用不锈钢耐尿素高温循环腐蚀性能的研究 [J]. 汽车工艺与材料, 2017, (5): 41)
[2] Xu Z H, Zhang G L, Li M C, et al. Corrosion behavior of stainless steels in simulated automotive SCR environment [A]. Proceedings of the 10th China Iron & Steel Annual Meeting and the 6th Baosteel Academic Annual Meeting III [C]. Shanghai: China Metal Society, 2015: 975
(徐泽瀚, 张国利, 李谋成等. 不锈钢在汽车SCR模拟环境中的腐蚀行为研究 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集[C]. 上海: 中国金属学会, 2015)
[3] Shang C J. Research progress of ferritic stainless steel for automobile exhaust system [N]. World Metals, 2018-08-28(B08))
(尚成嘉. 汽车排气系统用铁素体不锈钢的研究进展 [N]. 世界金属导报, 2018-08-28(B08))
[4] Li M X, Shang C J. Corrosion study of stainless steels for commerial Vehicle SCR system [J]. Shanghai Coatings, 2018, 56(2): 5
(李明轩, 尚成嘉. 商用车SCR系统用不锈钢的腐蚀性研究 [J]. 上海涂料, 2018, 56(2): 5)
[5] Nocker J, Nyborg L, Norell M. Corrosion of stainless steels in simulated diesel exhaust environment with urea [J]. Mater. Corros., 2011, 63: 388
[6] Miraval C, Saedlou S, Evrard R, et al. Influence of Selective Catalytic Reduction (SCR) system on stainless steel durability [J]. Meta. And Mater., 2013, 66: 153
[7] Wang S D, Han P H, Ma R Y, et al. Effect of urea on condensates corrosion of stainless steels in simulated automotive exhaust environments [J]. Chin J. Soc. Corros. Prot., 2013, 33: 41
(王士栋, 韩沛洪, 马荣耀等. 尿素对模拟汽车废气环境中不锈钢冷凝液腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 41)
[8] Zhang Y F, Shores D A. Cracking and spoiling of oxide scale from 304 stainless steel at high temperatures [J]. J. Electrochem. Soc., 1994, 141: 1255
[9] Teng Y F. High temperature fatigue behavior of 429 and 429 Mo ferritic stainless steels [D]. Shenyang: Shenyang University of Technology, 2016
(滕云峰. 429与429Mo两种铁素体不锈钢的高温疲劳行为 [D]. 沈阳: 沈阳工业大学, 2016)
[10] Yun D W, Seo H S, Jun J H, et al. Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect [J]. Int. J. Hydrogen Energ., 2012, 37: 10328
[11] Jiang Y, Kim S, Lee J. Effect of different Mo contents on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels [J]. Metall. Mater. Trans., 2005, 36A: 1229
[12] Li M X, Zhang W, Wang X L, et al. Effect of Nb on the performance of 409 stainless steel for automotive exhaust systems [J]. Steel. Res. Int., 2018, 89: 1700558
[13] Fujita N, Ohmura K, Kikuchi M, et al. Effect of Nb on high-temperature properties for ferritic stainless steel [J]. Scr. Mater., 1996, 35: 705
[14] Shu J. Investigation on corrosion resistance properties and formabilities of ferritic stainless steel used as aumotive exhaust system [D]. Shanghai: Shanghai Jiao Tong University, 2013
(舒俊. 汽车排气系统用铁素体不锈钢耐蚀性能和成形性能的研究 [D]. 上海: 上海交通大学, 2013)
[15] Li Z. Research on intergranular corrosion resistance of low chromium ferritic stainless steel [D]. Shanghai: Fudan University, 2013
(李钊. 低铬铁素体不锈钢耐晶间腐蚀性能研究 [D]. 上海: 复旦大学, 2013)
[16] Zhang H, Zhang G L, Liu X, et al. Condensate corrosion behavior of stainless steels for automotive mufflers [J]. Chin J. Soc. Corros. Prot., 2016, 36: 20
(张辉, 张国利, 刘星等.消声器用不锈钢的冷凝液腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 20)
[17] Zhang C Q, Lv G M, Ouyang M H, et al. Research progress of nitride precipitation and its effects on corrosion resistance of high-nitrogen austenitic stainless steel [J]. Hot Work. Technol., 2018, 47(2): 33
(张昌青, 吕广明, 欧阳明辉等. 高氮奥氏体不锈钢氮化物析出及其对耐蚀性影响的研究进展 [J]. 热加工工艺, 2018, 47(2): 33)
[18] Guo Y Y. Study on the technology of plasma nitriding and plasma nitrocarburising of austenitic stainless steel in the low lem perature [D]. Shenyang: Northeastern University, 2008
(郭元元. 奥氏体不锈钢低温离子渗氮及碳氮共渗工艺研究 [D]. 沈阳: 东北大学, 2008)
[19] Nockert J, Norell M. Corrosion at the urea injection in SCR-system during component test [J]. Mater. Corros., 2013, 64: 34
[20] Saedlou S, Santacreu P, Leseux J. Suitable stainless steel selection for exhaust line containing a selective catalytic reduction (SCR) system [J]. SAE Int., 2011-01-1323
[21] Xiao J M. The Metallization of Stainless Steel. 2nd ed. [M]. Beijing: Metallurgical Industry Press, 2006
(肖纪美. 不锈钢的金属学问题. 第2版 [M]. 北京: 冶金工业出版社, 2006)
[22] Wan Z. Study on intergranular corrosion of ferrite stainless steel [J]. Corros. Prot. Petrochem. Ind., 2015, 32(4): 62
(万章. 铁素体不锈钢晶间腐蚀问题的探讨 [J]. 石油化工腐蚀与防护, 2015, 32(4): 62)
[23] Zhang H W. Research on Corrosion Resistance of Stainless Steel for Automotive Exhaust System [D]. Beijing: University of Science and Technology Beijing, 2013
(张宏伟. 汽车排气系统用不锈钢耐腐蚀性能研究 [D]. 北京: 北京科技大学, 2013)
[24] Chen C, Shang C J, Song X, et al. Condensate corrosion behavior of new style ferritic stainless steels used in automotive exhaust system [J]. Iron Steel, 2009, 44(10): 78
(陈超, 尚成嘉, 宋欣等. 新型汽车排气系统用铁素体不锈钢的冷凝液腐蚀 [J]. 钢铁, 2009, 44(10): 78)
[25] Salgado M F D, Rodrigues S C S, Santos D M, et al. Cyclic oxidation resistance of ferritic stainless steels used in mufflers of automobiles [J]. Eng. Fail. Anal, 2017, 79: 89
[1] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[2] FENG Hanxu, ZHAO Lianxiang, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying, LIU Kai. Effect of Chromium Quality on Inclusions in GH4169 Ingot[J]. 材料研究学报, 2023, 37(2): 136-144.
[3] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] HAO Jian, LIU Fang, YANG Shulin, YAO Xiaoyu, SUN Wenru. Effect of Melting Rate on Structure and Inclusions of GH4169G Alloy Ingot Fabricated by Argon Protected Electroslag Melting[J]. 材料研究学报, 2022, 36(11): 811-820.
[7] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[8] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[10] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[11] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
No Suggested Reading articles found!