Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 466-472    DOI: 10.11901/1005.3093.2019.523
ARTICLES Current Issue | Archive | Adv Search |
Effect of Surface Spraying Chitosan Solution on Structure and Properties of Polyvinylidene Fluoride Porous Membrane
CHENG Shijie, WANG Chenyang, YIN Shuyi, ZHANG Hongwei, ZUO Danying()
State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan 430020, China
Cite this article: 

CHENG Shijie, WANG Chenyang, YIN Shuyi, ZHANG Hongwei, ZUO Danying. Effect of Surface Spraying Chitosan Solution on Structure and Properties of Polyvinylidene Fluoride Porous Membrane. Chinese Journal of Materials Research, 2020, 34(6): 466-472.

Download:  HTML  PDF(4940KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

After spraying acetic acid solution of chitosan (CS) on polyvinylidene fluoride (PVDF) solution film, PVDF porous membrane was prepared by immersion precipitation phase inversion method. The effect of the volume of CS solution on the structure and properties of porous membrane was investigated, and the mechanism of membrane formation was discussed. The results show that with the increase of CS solution volume the porosity and the surface hydrophilicity of the prepared PVDF membrane increased, the content of β crystal on the top surface decreased, while the content of α crystal increased. The top surface of plain PVDF membrane prepared with the PVDF solution film without sprayed CS solution has dense structure, while the upper surface of PVDF membrane prepared with the PVDF solution film after CS solution spraying has porous structure. The cross-section structure of all PVDF membranes is finger like macroporous structure. When CS solution volume was 2 mL, 4 mL and 6 mL, the water flux of corresponding PVDF membranes first increased and then decreased, which are 683.33 L/m2h, 1121.57 L/m2h, 1171.36 L/m2h and 1029.02 L/m2h, respectively. The difference in structure and properties of PVDF membranes prepared with different procedure was mainly due to the different formation mechanism for the top layer of the membranes.

Key words:  surface and interface in the materials      polyvinylidene fluoride porous membrane      chitosan      spraying      membrane structure      water flux     
Received:  11 November 2019     
ZTFLH:  TQ028.8  
Fund: Hubei Natural Science Foundation(2018CFB267)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.523     OR     https://www.cjmr.org/EN/Y2020/V34/I6/466

SampleSpraying volume of CS solution

CS content

/%

Porosity/%Mean pore diameter/μmMembrane thickness/μm

Contact angle

/(°)

PM00 mL085.780.479082.565
PM22 mL1.0990.940.7210067.070
PM44 mL2.2291.420.7410066.950
PM66 mL3.3489.480.729066.251
Table 1  Properties of PVDF membranes with different spraying volumes of CS solution
Fig.1  Infrared spectroscopy of PVDF membranes with different spraying volumes of CS solution
Fig.2  Infrared spectroscopy of PVDF different membranes in range of 400~1000 nm wavenumber
SamplesElementEnergy/keVMass/%Atom/%
PM0C0.27745.156.59
F0.67754.5343.26
Cl2.6210.370.16
Total100100
PM4C0.27739.9150.87
N0.3922.452.68
F0.67757.6346.44
Total100100
Table 2  Energy spectrum analysis of PVDF membrane and PVDF membrane with spraying 4 mL CS solution
Fig.3  SEM photos of PVDF membranes with different spraying volume of CS solution (A) top surface, (B) bottom surface, (C) cross section
Fig.4  Variation curve of water flux of PVDF membranes with different CS spraying volume
Fig.5  Relations of porosity, mean pore diameter and water flux with four PVDF membranes
[1] Kang G D, Cao Y M, Application and modification of poly(vinylidene fluoride) (PVDF) membranes-A review[J], J. Membr. Sci., 2014, 463: 145
doi: 10.1016/j.memsci.2014.03.055
[2] Zeng K L, Zhou J, Cui Z L, et al.. Insight into fouling behavior of poly(vinylidene fluoride) (PVDF) hollow fiber membranes caused by dextran with different pore size distributions[J]. Chin. J. Chem. Eng., 2018, 26(2): 268
doi: 10.1016/j.cjche.2017.04.008
[3] Zhao G, Chen W N. Enhanced PVDF membrane performance via surface modification by functional polymer poly (N-isopropylacrylamide) to control protein adsorption and bacterial adhesion [J]. React. Funct. Polym., 2015, 97:19
doi: 10.1016/j.reactfunctpolym.2015.10.001
[4] Pan Y, Yu Z, Shi H, et al. A novel antifouling and antibacterial surface-functionalized PVDF ultrafiltration membrane via binding Ag/SiO2 nanocomposites [J]. J. Chem. Technol. Biotechnol., 2017, 92(3): 562
[5] Di M A, Sittinger M, Risbud M V. Chitosan: A versatile biopolymer for orthopedic tissue-engineering [J]. Biomaterials, 2005, 26(30): 5983
doi: 10.1016/j.biomaterials.2005.03.016
[6] Liao L, Fei F, Cheng B W, et al. Fabrication and antibacterial properties of cellulose triacetate/chitosan reverse osmosis membrane [J]. Acta Polym. Sinica, 2018, 5: 607
(廖亮, 费鹏飞, 程博闻等. 三醋酸纤维素/壳聚糖反渗透膜的制备及性能研究 [J]. 高分子学报, 2018, 5: 607)
[7] XueY H, Fu R Q, Xu T W. Preparation of SPEEK and SPEEK/Chitosan composite proton exchange membranes for application indirect methanol full cells [J]. Acta Polym. Sinica, 2010, 3: 285
(薛艳红, 傅荣强, 徐铜文. 磺化聚醚醚酮与壳聚糖共混制备直接甲醇燃料电池用质子交换膜 [J]. 高分子学报, 2010, 3: 285)
doi: 10.3724/SP.J.1105.2010.00285
[8] Elizalde C N B, Al-Gharabli S, Kujawa J, et al., Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance[J], Sep. Purif. Technol., 2018, 190: 68
[9] Li Q, Xu Z L, Yu L Y. Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes [J]. J. Appl. Polym. Sci., 2010, 115 (4): 2277
[10] Chen F T, Shi X X, Chen X B, et al. Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane [J], Appl. Surf. Sci., 2018, 427: 787
[11] Tao M M, Liu F, Ma B R, et al. Effect of solvent power on PVDF membrane polymorphism during phase inversion [J]. Desalination, 2013, 316: 137
[12] Chen P, Hou Z C, Lu X F. FTIR characterization of PVDF powder grafted with N-vinylpyrrolidone (NVP) by simultaneous irradiation method [J]. J. Radiat. Res. Radiat. Process. 2011, 29(3): 133
(陈鹏, 侯铮迟, 陆晓峰. 聚偏氟乙烯共辐射接枝N_乙烯基吡咯烷酮的红外光谱分析 [J]. 辐射研究与辐射工艺研究, 2011, 29(3): 133)
[13] Liang S, Xiao K, Mo Y, et al. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling [J]. J. Membr. Sci. 2012, 394-395: 184
[14] Mathew S, Abraham T. E. Characterization of ferulic acid incorporated starch-chitosan blend films [J]. Food Hydrocolloids, 2008, 22: 826
[15] Ma W Z, Cao Y Y, Gong F H, et al. Poly(vinylidene fluoride) membranes prepared via nonsolvent induced phase separation combined with the gelation [J]. Colloids Surf. APhysicochem. Eng. Aspects, 2015, 479: 25
[16] Zuo D Y, Li H J, Liu H T, et al. Effect of different preparation methods on structure and properties of chitosan/poly-lactic acid blend porous membrane [J]. J Porous Mater., 2012, 19: 1015
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[7] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[12] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[13] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[14] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!