Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 459-465    DOI: 10.11901/1005.3093.2019.475
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Si-containing Benzoxazine and Its Influence on Curing Reaction Kinetics of Bismaleimide Ester Resin
JIA Yuan1, ZHANG Liying1, MA Mingyang1(), SHI Ruifeng2
1.College of Chemical Engineering, Xi'an University, Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Xi’an 710065,China
2.School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi 'an 710054, China
Cite this article: 

JIA Yuan, ZHANG Liying, MA Mingyang, SHI Ruifeng. Preparation of Si-containing Benzoxazine and Its Influence on Curing Reaction Kinetics of Bismaleimide Ester Resin. Chinese Journal of Materials Research, 2020, 34(6): 459-465.

Download:  HTML  PDF(2496KB)  Mobile PDF(3764KB)
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new Si-containing BOZ resin monomer (Si-BOZ) was prepared via chemical synthesis method, which was then used as the modifier to blend with BMI, so that to yield the BMI prepolymer with lower viscosity, and the modified BMI resin can also exhibits excellent heat resistance, radiation resistance and mechanical properties. The gelation time of Si-BOZ, BMI, Si-BOZ/BMI resin was studied by plate small knife method, the chemical reactions of Si-BOZ and BMI during curing process were studied by FTIR, and the effect of the addition of Si-BOZ on the curing reaction kinetics of BMI was studied by non-isothermal scanning calorimetry (DSC). The role of parameters in the curing process was also discussed by Kissinger method and Ozawa method.

Key words:  composite      bismaleimide      polymer blends      benzoxazine resin      curing kinetics     
Received:  15 October 2019     
ZTFLH:  O631  
Fund: Scientific Research Plan of Education Department of Shaanxi Province(19JK0741);Innovation and Entrepreneurship Project for College Students of Shaanxi Province(S201911080053)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.475     OR     https://www.cjmr.org/EN/Y2020/V34/I6/459

Fig.1  Synthesis of organic-inorganic Si-BOZ
Fig.2  FTIR image of Si-BOZ/BMI
Fig.3  Relationship between gelation time and temperature of two BOZ system
Fig.4  FTIR image of Si-BOZ/BMI
Fig.5  Relationship between gelation time and temperature of BMI and Si-BOZ/BMI resin
Fig.6  DSC of BMI and Si-BOZ/BMI resin in different rate of temperature increase (a: BMI, b: Si-BOZ/BMI)
Heating rate/℃·min-151015
Temperature of onset (Ti)/℃175.74203.76212.85
Temperature of peak (Tm)/℃250.67270.33280.07
Temperature of ending (Tf)/℃294.82310.89345.27
Table 1  Peak temperature of DSC of BMI
Heating rate/℃·min-151015
Temperature of onset (Ti)/℃186.33205.97212.91
Temperature of peak (Tm)/℃239.75264.36273.54
Temperature of ending (Tf)/℃295.05320.86325.75
Table 2  Peak temperature of DSC of Si-BOZ/BMI
Fig.7  Linear regression curve of peak temperature of DSC of BMI and Si-BOZ/BMI (a: BMI, b: Si-BOZ/BMI)
Fig.8  Linear regression curve of Kissinger(a: BMI, b: Si-BOZ/BMI)
Fig.9  Linear regression curve of Ozawa (a: BMI; b: Si-BOZ/BMI)
[1] Shibata M, Satoh K, Ehara S. Thermosetting bismaleimide resins generating covalent and multiple hydrogen bonds [J]. J. Appl. Polym. Sci., 2016, 133: 43121
[2] Han Y, Xie C, Wu Z Z, et al. Preparation and properties of silicon carbide/glass fibres/bismaleimide composites [J]. J. Elastom. Plast., 2016, 48: 97
[3] Chen Z Y, Yan H X, Liu T Y, et al. Nanosheets of MoS2 and reduced graphene oxide as hybrid fillers improved the mechanical and tribological properties of bismaleimide composites [J]. Compos. Sci. Technol., 2016, 125: 47
[4] Phelan J C, Sung C S P. Cure characterization in bis(maleimide)/ diallylbisphenol a resin by fluorescence, FT-IR, and UV-reflection spectroscopy [J]. Macromolecules, 1997, 30: 6845
[5] Wang S Q, Dong S L, Gao Y, et al. Thermal ageing effects on mechanical properties and barely visible impact damage behavior of a carbon fiber reinforced bismaleimide composite [J]. Mater. Des., 2017, 115: 213
[6] Zhao Y, Liu W, Seah L K, et al. Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment [J]. Compos., 2016, 106B: 332
[7] Lowe A, Fox B, Otieno-Alego V. Interfacial ageing of high temperature carbon/bismaleimide composites [J]. Composites, 2002, 33A: 1289
[8] Nakamura M, Ishida H. Synthesis and properties of new crosslinkable telechelics with benzoxazine moiety at the chain end [J]. Polymer, 2009, 50: 2688
[9] Jia Y. Synthesis of high heat-resistant PBOZ-BMI resin and the research of its modification [D]. Xi’an: Northwestern Polytechnical University, 2016
(贾园. 耐热耐磨PBOZ-BMI树脂的合成及其改性研究 [D]. 西安: 西北工业大学, 2016)
[10] Rao B S, Palanisamy A. A new thermo set system based on cardanol benzoxazine and hydroxy benzoxazoline with lower cure temperature [J]. Progr. Organ. Coat., 2012, 74: 427
[11] Jia Y, Yan H X, Li S, Liu TY. Tribology Property of Benzoxazine-Bismaleimide Composites with Hyperbranched Polysilane-Grafted Multi-Walled Carbon Nanotubes [J]. Nano., 2016, 11: 1650061
[12] Wang Y X, Ishida H. Cationic ring-opening polymerization of benzoxazines [J]. Polymer, 1999, 40: 4563
[13] Cao G P, Chen W J, Liu X B. Synthesis and thermal properties of the thermosetting resin based on cyano functionalized benzoxazine [J]. Polym. Degrad. Stab., 2008, 93: 739
[14] Yan H X, Jia Y, Ma L, et al. Functionalized multiwalled carbon nanotubes by grafting hyperbranched polysiloxane [J]. Nano, 2014, 9: 1450040
[15] Tan Z W, Wu X, Zhang M, et al. Performances improvement of traditional polybenzoxazines by copolymerizing with cyclotriphosphazene-based benzoxazine monomers [J]. Polym. Bull., 2015, 72: 1417
[16] Liu R S. The development of new tough bismaleimide resins as matrix for advanced composite material [J]. Acta Materiae Compositae Sinica, 1990, 4: 79
(刘润山. 双马来酰亚胺树脂增韧及用作先进复合材料基体的发展 [J]. 复合材料学报, 1990, 4: 79)
[17] Takeichi T, Saito Y, Agag T, et al. High-performance polymer alloys of polybenzoxazine and bismaleimide [J]. Polymer, 2008, 49: 1173
[18] Ye H. Synthesis and properties of low viscosity epoxy resin [D]. Wuhan: Wuhan University of Technology, 2013
(叶虎. 低粘度环氧树脂的合成制备与性能研究 [D]. 武汉: 武汉理工大学, 2013)
[19] Lu D, Su C P, Zhou Q, et al. Curing behavior and heat resistance of poly (m-diethynylbenzene-methylsilane)/acetylene-functional benzoxazine blended resins [J]. Journal of Beijing University of Chemical Technology (Natural Science), 2019, 46: 54
(卢丹, 束长朋, 周权, 宋宁, 倪礼忠. 聚(间二乙炔基苯-甲基氢硅烷)/含乙炔基苯并噁嗪树脂共混体系固化行为及其耐热性能研究 [J]. 北京化工大学学报(自然科学版), 2019, 5: 54)
[20] Chen J R, Wang J G, Jiao Y S. Propenyl phenyl compound modified bismaleimide resin (ΙΙ) cure and properties of modified BMI resin [J]. Journal of functional polymers, 1997, 10: 178
(陈继荣, 王井岗, 焦扬声. 丙烯基苯化合物改性双马来酰亚胺树脂ΙΙ. 改性树脂的固化及性能 [J]. 功能高分子学报, 1997, 10: 178)
[21] Lu Z Y. Study on bismaleimide resin matrix for VARTM [D]. Xi’an: Northwestern Polytechnical University, 2005
(卢忠远. VARTM用双马来酰亚胺树脂基体的研究 [D]. 西安: 西北工业大学, 2005)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!