Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (3): 169-175    DOI: 10.11901/1005.3093.2019.429
ARTICLES Current Issue | Archive | Adv Search |
Electrospinning TiO2 Modified Biphenyl Polyimide Lithium Ion Battery Separator
GONG Guifen1(),LI Ze1,WANG Lei2,CUI Weiwei1
1. School of Materials Science and Engineering,Harbin University of Science and Technology,Harbin 150040,China
2. College of Materials Science and Chemical Engineering,Harbin Engineering University,Harbin 150001,China
Cite this article: 

GONG Guifen,LI Ze,WANG Lei,CUI Weiwei. Electrospinning TiO2 Modified Biphenyl Polyimide Lithium Ion Battery Separator. Chinese Journal of Materials Research, 2020, 34(3): 169-175.

Download:  HTML  PDF(2638KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiO2/PAA composite fiber membranes were prepared by high-voltage electrospinning, and then were thermally imidized to obtain TiO2/PI composite fiber membranes. The physical properties, mechanical properties and electrochemical properties of TiO2/PI composite fiber separators were assessed by means of scanning electron microscope, Fourier infrared spectrometer, thermogravimetric analyzer and electrochemical workstation. The results show that the membrane have clear three-dimensional network structure, and the tensile strength, the porosity and the liquid absorption rate of the modified TiO2/PI composite membrane increase to 16.74 MPa, 77.5% and 550%, respectively comparing with the plain PI membrane; the membrane have good thermal shrinkage performance; excellent overall electrochemical performance; the prepared Li-battery of LiFePO4 (lithium iron phosphate positive electrode)/TiO2/PI/C (graphite negative electrode) presents excellent cycle stability and high discharge capacity, after 100 cycles at 1 C、at 25°C and 120°C, the cell coulombic efficiency is as high as 96.7% and 90.7%, respectively.

Key words:  organic polymer materials      TiO2      biphenyl polyimides      lithium battery separator      electro-spinning      electrochemical property     
Received:  03 September 2019     
ZTFLH:  TQ322.4+2  
Fund: National Natural Science Foundation of China(51603075)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.429     OR     https://www.cjmr.org/EN/Y2020/V34/I3/169

Fig.1  FTIR spectra of membranes
Fig.2  SEM images of TiO2/PI composite membranes with different TiO2 content (mass fraction) (a) 0%, (b) 1%, (c) 2%, (d) 3%, (e) 4%, (f) 5%
TiO2 content0%1%2%3%4%5%
Porosity rate/%66.771.174.476.377.575.2
Table 1  Porosity rate of TiO2/PI composite membranes with different TiO2 content (mass fraction)
Fig.3  Liquid absorption rate of TiO2/PI composite me-mbranes with different TiO2 content
Fig.4  TG curves of the TiO2/PI composite membranes with different TiO2 content
SampleDirectionThermal shrinkage/%
100℃150℃200℃250℃
PPLongitudinal4.1---
Horizontal7.9---
PILongitudinal0001.7
Horizontal0001.4
TiO2/PILongitudinal0001.5
Horizontal0001.0
Table 2  Dimensional stability of PP, PI and TiO2/PI separators at 100, 150, 200, 250℃
Fig.5  G curves of the TiO2/PI composite membranes with different TiO2 content
Fig.6  Decomposition voltage of membranes
Fig.7  Nyquist plots of PP、PI and TiO2/PI membranes (a) “Li/separator/Li” system, (b) “SS/separator/SS” system
Fig.8  Cyclic performance for the cells with PP, PI and TiO2/PI membranes at 1 C rate and different tem-perature (a) 25℃, (b) 120℃
[1] Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective [J]. J. Am. Chem. Soc., 2013, 135: 1167
[2] Aemand M, Tarascon J M. Building better batteries [J]. Nature, 2008, 451: 652
[3] Wang C Y, Zhang G S, Ge S H, et al. Lithium-ion battery structure that self-heats at low temperatures [J]. Nature, 2016, 529: 515
[4] Ding Y C, Hou H Q, Zhao Y, et al. Electrospun polyimide nanofibers and their applications [J]. Prog. Polym. Sci., 2016, 61: 67
[5] Yoshino A. The birth of the lithium-ion battery [J]. Angew. Chem. Int. Ed., 2012, 51: 5798
[6] Jansen A N, Kahaian A J, Kepler K D, et al. Development of a high-power lithium-ion battery [J]. J. Power Sour., 1999, 81-82: 902
[7] Lu L G, Han X B, Li J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. J. Power Sour., 2013, 226: 272
[8] Gong G F, Wang L, Xu A W. Preparation and properties of PMMA/EVOH-SO3Li Li-ion battery separator composite by electrospinning [J]. Acta Mater. Compos. Sin., 2018, 35: 478
[8] 巩桂芬, 王磊, 徐阿文. 静电纺PMMA/EVOH-SO3Li锂离子电池隔膜复合材料的制备及性能 [J]. 复合材料学报, 2018, 35: 478
[9] Gong G F, Wang L, Li Z. Electrochemical properties of lithium ethylene-vinyl alcohol copolymer sulfate/polyimide Li-ion battery separator composite by electrospinning [J]. Acta Mater. Compos. Sin., 2018, 35: 2632
[9] 巩桂芬, 王磊, 李泽. 静电纺聚乙烯-乙烯醇磺酸锂/聚酰亚胺锂离子电池隔膜复合材料的电化学性能 [J]. 复合材料学报, 2018, 35: 2632
[10] Zhang Y L, Cao W Q, Cai Y Z, et al. Rational design of NiFe2O4-rGO by tuning the compositional chemistry and its enhanced performance for a Li-ion battery anode [J]. Inorg. Chem. Front., 2019, 6: 961
[11] Cai Y Z, Cao W Q, Zhang Y L, et al. Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes [J]. J. Alloys Compd., 2019, 811: 152011
[12] Xiong M, Tang H L, Wang Y D, et al. Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance [J]. Carbohyd. Polym., 2014, 101: 1140
[13] Yang C L, Li Z H, Li W Jet al. Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF-SiO2 nanocomposite fibers for lithium-ion batteries [J]. J. Memb. Sci., 2015, 495: 341
[14] Cao L Y, An P, Xu Z W, et al. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries [J]. J. Electroanal. Chem., 2016, 767: 34
[15] Huang X S. Separator technologies for lithium-ion batteries [J]. J. Solid State Electrochem., 2011, 15: 649
[16] Qu W. Study on properties of ceramic modified separator for lithium ion batteries [J]. Light Ind. Sci. Technol., 2019, 35(4): 49
[16] 瞿威. 锂离子电池用陶瓷改性隔膜性能研究 [J]. 轻工科技, 2019, 35(4): 49
[17] Gong G F, Wang L, Lan J. Electrochemical properties of EVOH-SO3Li/PET lithium ion battery separator via electrospinning [J]. J. Mater. Eng., 2018, 46(3): 7
[17] 巩桂芬, 王 磊, 兰 健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能 [J]. 材料工程, 2018, 46(3): 7
[18] Wang S, Zhang D L, Shao Z Q, et al. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towar-ds safer lithium-ion battery [J]. Carbohyd. Polym., 2019, 214: 328
[19] Chen H L, Jiao X N, Ke P. Preparation and properties of orientation reinforced composite separator for lithium-ion battery [J]. J. Textile Res., 2018, 39(7): 8
[19] 陈洪立, 焦晓宁, 柯 鹏. 取向增强复合锂离子电池隔膜的制备及其性能 [J]. 纺织学报, 2018, 39(7): 8
[20] Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers [J]. J. Electrostat., 1995, 35: 151
[21] Thompson C J, Chase G G, Yarin A L, et al. Effects of parameters on nanofiber diameter determined from electrospinning model [J]. Polymer, 2007, 48: 6913
[22] Wang M C, Wu R R, Cao H B, et al. Preparation and application of electrospun polyimide nanofibrers [J]. High-tech Fibers Appl., 2012, 37(6): 62
[22] 王敏超, 吴瑢蓉, 曹厚宝等. 静电纺聚酰亚胺纳米纤维的制备及其应用 [J]. 高科技纤维与应用, 2012, 37(6): 62
[23] Tian Y C, Zhang H P, Li B C, et al. Structure and properties of electrospun polyacrylonitrile/graphene carbon nanofibers [J]. J. Text. Res., 2018, 39(10): 24
[23] 田银彩, 张浩鹏, 李博琛等. 静电纺聚丙烯腈/石墨烯碳纳米纤维的结构与性能 [J]. 纺织学报, 2018, 39(10): 24
[24] Yan X R, Marini J, Mulligan R, et al. Slit-surface electrospinning: a novel process developed for high-throughput fabrication of core-sheath fibers [J]. PLoS One, 2015, 10: e0125407
[25] Wang Q J, Jian Z X, Song W L, et al. Facile fabrication of safe and robust polyimide fibrous membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester gel electrolytes for lithium-ion batteries [J]. Electrochim. Acta, 2014, 149: 176
[26] Shayapat J, Chung O H, Park J S. Electrospun polyimide-composite separator for lithium-ion batteries [J]. Electrochim. Acta, 2015, 170: 110
[27] Li X T, Wang G, Huang L J, et al. Significant enhancement in dielectric constant of polyimide thin films by doping zirconia nanocrystals [J]. Mater. Lett., 2015, 148: 22
[28] Chen W Y, Liu Y B, Ma Y, et al. Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate) [J]. J. Power Sour., 2015, 273: 1127
[29] Wu D Z, Deng L, Sun Y, et al. A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating [J]. RSC Adv., 2017, 7: 24410
[30] Liang X X, Yang F, Yang Y. Research progress in preparation of lithium ion battery separator by electrospinning [J]. Insulat. Mater., 2018, 51(11): 7
[30] 梁幸幸, 杨帆, 杨颖. 静电纺丝制备锂电池隔膜研究进展 [J]. 绝缘材料, 2018, 51(11): 7
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[5] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[6] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
No Suggested Reading articles found!