Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (3): 209-216    DOI: 10.11901/1005.3093.2019.426
ARTICLES Current Issue | Archive | Adv Search |
Influences of Heat Treatment Soaking Time on Crystallization and Properties of Tailings-based Glass-Ceramics
LI Hongxia(),LI Baowei,XU Pengfei,LIU Zhongxing
Materials and Metallurgy School,Inner Mongolia University of Science and Technology,Baotou 014010,China
Cite this article: 

LI Hongxia,LI Baowei,XU Pengfei,LIU Zhongxing. Influences of Heat Treatment Soaking Time on Crystallization and Properties of Tailings-based Glass-Ceramics. Chinese Journal of Materials Research, 2020, 34(3): 209-216.

Download:  HTML  PDF(6377KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Diopside tailings-based glass-ceramics were prepared via melting method plus one-step crystallization heat treatment with Shandong gold tailings and Guyang iron tailings as the main raw material. Then the influence of heat treatment soaking time on the crystal growth and properties of the prepared glass-ceramics was investigated by DSC, XRD, Raman spectroscopy, SEM, and universal mechanical properties tester. The results show that diopside crystals can grow through nucleation and whereafter growth when heat treated at 720℃ for 30 min. With the increase of heat treatment time, the size of diopside crystals gradually increased and the morphology of the crystals evolved from spherical to dendritic. When the heat treatment temperature was 820℃, the morphology and structure of the diopside crystals did not change with the increase of soaking time. Thus, heat treatment at 820℃ for 2 h can be considered to be the optimal. The prepared glass ceramics exhibit an excellent comprehensive performance with density of 2.97 g/cm3, bending strength of 211.0 MPa, hardness of 789.0 MPa, acid resistance of 99.4% and alkali resistance of 99.3 % respectively.

Key words:  inorganic non-metallic materials      tailing-based glass-ceramic      soaking time      diopside      crystal growth     
Received:  31 August 2019     
ZTFLH:  TQ174  
Fund: National Natural Science Foundation of China(51964039);Natural Science Foundation of Inner Mongolia Autonomous Region(2019MS05050);Inner Mongolia Autonomous Region University Scientific Research Project(NJZZ18141)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.426     OR     https://www.cjmr.org/EN/Y2020/V34/I3/209

Raw materialsSiO2Al2O3CaOMgOK2ONa2OFe2O3CaF2K2OBaOLOITotal
Gold tailing67.2011.043.861.645.661.442.30-2.18-4.68100.00
Iron tailing43.005.6021.904.001.201.2011.300.302.266.173.07100.00
Table 1  Chemical compositions of gold tailings and iron tailings (mass fraction, %)
Fig.1  XRD patterns of raw materials (a) iron tailing, (b) gold tailing
CompositionsSiO2Al2O3CaOMgOK2O +Na2OTFeCr2O3
Content40~507~915~205~85~86~90~1
Table 2  Nominal compositions of base glass (mass fraction, %)
Fig.2  DSC curve of basic glass
Sample No.Crystallization
C20D720℃, 20 min
C30D720℃, 30 min
C60HD720℃, 60 min
C90HD720℃, 90 min
C120HD720℃, 120 min
C0G820℃, 0 min
C15G820℃, 15 min
C30G820℃, 30 min
C45G820℃, 45 min
Table 3  Heat treatment parameters of the glass-ceramic samples
Fig.3  SEM images of as-synthesized glass-ceramics at 720℃ with different soaking time by conventional heating (a) C20D-720℃/20 min, (b) C30D-720℃/30 min, (c) C60HD-720℃/1 h, (d) C120HD-720℃/2 h
Fig.4  SEM images of as-synthesized glass-ceramics at 820℃ with different soaking time by conventional heating (a) C0G-820℃/0 min, (b) C15G-820℃/15 min, (c) C30G-820℃/30 min, (d) C45G-820℃/45 min
Fig.5  XRD patterns of glass-ceramics heat treated at 720℃ for different soaking times
Fig.6  XRD patterns of glass-ceramics heat treated at 820℃ for different soaking times
Fig.7  TEM images of the sample heat treated at 720℃ for 1 h (C60HD) (a) BF image, (b) SAED image of diopside, (c) HRTEM image, (d) HADDF image
Fig.8  Raman spectra of glass-ceramics heat treated at 720℃ for different soaking times
Fig.9  Raman spectra of as-synthesized glass-ceramics heat treated at 820℃ for different soaking times

Raman band

/cm-1

Assignment of the Raman band
999Si-Osymmetric stretching (Q2)
761/691Si-O0 symmetric stretching (Q0)
658Si-O-Si symmetric stretching or bending
525O-Si-O stretching or bending
Table 4  Raman bands observed for the tailing-based glass-ceramic materials
No.

Density

/g·cm-3

Bending strengths

/MPa

Acid-resistance

(20%H2SO4)

Alkali-resistance (20%NaOH)

Hardness

/kg·mm-2

C30D2.62101.4±25.774.2%98.5%649.1±5.8
C60HD2.65112.4±18.792.5%98.9%678.9±15.5
C120HD2.78140.0±30.597.8%99.1%700.9±18.1
C0G2.83163.9±16.598.9%99.0%760.8±19.6
C15G2.87170.4±11.298.8%99.1%768.2±11.7
C30G2.93174.4±26.299.1%99.1%781.5±16.0
C45G2.97211.0±19.599.3%99.1%789.0±14.4
Table 5  Physical and chemical properties of glass-ceramics heat treated for various soaking time
[1] Isa H. A review of glass-ceramics production from silicate wa-stes [J]. Int. J. Phys. Sci., 2011, 6: 6691
[2] Du Y S, Yang X W, Zhang H X, et al. Effect of La2O3 on microstructures and crack propagation of tailing glass-ceramics [J]. Chin. J. Mater. Res., 2018, 32(2): 97
[2] 杜永胜, 杨晓薇, 张红霞等. 稀土La2O3对尾矿微晶玻璃显微结构和裂纹扩展行为的影响 [J]. 材料研究学报, 2018, 32(2): 97
[3] Li B W, He X Y, Chen H, et al. Influence of Nd2O3 addition on performance of glass-ceramics synthesized with tailings of Bayan-Obo west mine [J]. Chin. J. Mater. Res., 2015, 29: 874
[3] 李保卫, 何晓宇, 陈华等. Nd2O3优化白云鄂博西尾矿微晶玻璃性能机理 [J]. 材料研究学报, 2015, 29: 874
[4] Chen W Q, Li Y H, Xu S P, et al. Effect of TiO2 and Cr2O3 as crystal nucleus on crystallization of glass-ceramics from gold tailings [J]. J. Synth. Cryst., 2015, 44: 836
[4] 陈维铅, 李玉宏, 许世鹏等. TiO2和Cr2O3作晶核剂对金矿尾砂微晶玻璃结晶性能的影响 [J]. 人工晶体学报, 2015, 44: 836
[5] Deng L B, Zhang X F, Li B W, et al. Influence of CaF2 on the crystallization and corrosion resistance of CaO-Al2O3-MgO-SiO2 slag glass ceramics [J]. Mater. Rev., 2016, 30(9): 128
[5] 邓磊波, 张雪峰, 李保卫等. CaF2对CAMS系矿渣微晶玻璃析晶特性及抗腐蚀性能的影响 [J]. 材料导报, 2016, 30(9): 128
[6] Li B W, Deng L B, Zhang X F, et al. Structure and performance of glass-ceramics obtained by Bayan Obo tailing and fly ash [J]. J. Non-Cryst. Solids, 2013, 380: 103
[7] Li B W, Deng L B, Zhang X F, et al. Preparation and corrosion behavior of glass-ceramics tubes made of Bayan obo tailings and fly ash [J]. Int. J. Appl. Ceram. Technol., 2015, 12(Suppl. 3): E41
[8] Li B W, Du Y S, Zhang X F, et al. Effects of iron oxide on the crystallization Kinetics of Baiyunebo tailing glass-ceramics [J]. Trans. Indian Ceram. Soc., 2013, 72: 119
[9] Li B W, Du Y S, Zhang X F, et al. Crystallization characteristics and properties of high-performance glass-ceramics derived from Baiyunebo east mine tailing [J]. Environ. Prog. Sustain. Energy, 2014, 34: 420
[10] Deng L B, Zhang X F, Zhang M X, et al. Influence of melt holding time on the microstructure and properties of CAMS slag glass-ceramics [J]. Mater. Rev., 2017, 31(9): 125
[10] 邓磊波, 张雪峰, 张明星等. 熔制保温时间对CAMS系矿渣微晶玻璃结构与性能的影响 [J]. 材料导报, 2017, 31(9): 125
[11] Wang H J, Zscheckel T, Li B T, et al. Crystallization and microstructural evolution of MgO-Al2O3-SiO2-TiO2-La2O3 glass-ceramics [J]. J. Mater. Sci., 2017, 52: 1330
[12] Tian Y, Zuo W, Chen D D. Crystallization evolution, microstructure and properties of sewage sludge-based glass-ceramics prepared by microwave heating [J]. J. Hazard. Mater., 2011, 196: 370
[13] Wang Z J, Ni W, Jia Y, et al. Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand [J]. J. Non-Cryst. Solids, 2010, 356: 1554
[14] Hruby A. Evaluation of glass-forming tendency by means of DTA [J]. Czech. J. Phys., 1972, 22B: 1187
[15] McMillan P W. Class Ceramics [M]. New York: Academic Press, 1979
[16] Agathopoulos S, Tulyaganov D U, Ventura J M G, et al. Structural analysis and devitrification of glasses based on the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives [J]. J. Non-Cryst. Solids, 2006, 352: 322
[17] Tulyaganov D U, Agathopoulos S, Ventura J M, et al. Synthesis of glass-ceramics in the CaO-MgO-SiO2 system with B2O3, P2O5, Na2O and CaF2 additives [J]. J. Eur. Ceram. Soc., 2006, 26: 1463
[18] Mernagh T P, Hoatson D M. Raman spectroscopic study of pyroxene structures from the Munni Munni layered intrusion, Western Australia [J]. J. Raman Spectrosc., 1997, 28: 647
[19] Li B W, Ouyang S L, Zhang X F, et al. Effect temperature on the structure of CaO-MgO -Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy [J]. Spectrosc. Spect. Analy., 2014, 34: 1869
[19] 李保卫, 欧阳顺利, 张雪峰等. 温度对CaO-MgO-Al2O3-SiO2系纳米晶玻璃陶瓷结构影响的拉曼光谱研究 [J]. 光谱学与光谱分析, 2014, 34: 1869
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!