Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (3): 217-224    DOI: 10.11901/1005.3093.2019.442
ARTICLES Current Issue | Archive | Adv Search |
Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process
MA Weijie,YANG Xirong(),LUO Lei,LIU Xiaoyan,HAO Fengfeng
School of Metallurgy and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Cite this article: 

MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process. Chinese Journal of Materials Research, 2020, 34(3): 217-224.

Download:  HTML  PDF(2738KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The combined deformation processing technology of equal channel angular pressing (ECAP) and rotary swaging at indoor temperatures was applied to industrial pure titanium. Then the deformation behavior of the acquired ultrafine grained pure titanium by applied strain rates of 0.01, 0.1 and 1 s-1 at 200, 300, 350, 400 and 450°C was investigated via thermal compression test with the Gleeble 3800 thermal simulator. The results show that the dynamic recrystallization characteristics of the experimental true stress-strain curve are significant, and the apparent single peak stress appears. According to the Arrhenius constitutive equation based on the peak stress value of the acquired ultrafine grained pure titanium, the peak stress can effectively be predicted with an average relative error of only 4.44%. Since the large plastic deformed sample was subjected to pre-heat insulation treatment before thermal compression, the critical strain for dynamic recrystallization was increased, of which the material constant is 0.8329. The dynamic recrystallization behavior during deformation mainly occurs in the stage where the strain is greater than 0.1 and less than 0.4. Whereas the strain is greater than 0.4, the material undergoes secondary hardening.

Key words:  synthesizing and processing technics for materials      constitutive model      hot compression      ultrafine grain pure titanium     
Received:  11 September 2019     
ZTFLH:  TG146.2+3  
Fund: National Natural Science Foundation of China(51474170)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.442     OR     https://www.cjmr.org/EN/Y2020/V34/I3/217

Fig.1  Microstructure of coarse grain Ti (OM) (a) and ultrafine grain Ti (TEM) (b)
Fig.2  True stress vs true strain curves after compression deformation of UFG Ti (a) ε˙=0.01 s-1, T=200、300、350、400 and 450℃; (b) ε˙=0.01、0.1 and 1 s-1, T=300℃
Fig.3  The pole figures of compressed specimen under different conditions (a) UFG sample and at the same strain rate of 0.01 s-1; (b) room temperature ; (c) 300℃
Fig.4  TEM image of UFG Ti after compression at 300℃ and 0.01 s-1
Fig.5  Relationship between flow stress and thermal deformation parameters of UFG Tiln[sinh(ασ)] vs 1000/T (a) and lnZvs ln[sinh(ασ)] (b)
n1βαn

Q

/kJ·mol-1

ln An2
33.790.077350.00228925.33210.5636.6825.32
Table 1  Material constants for Arrhenius constitutive model
Fig.6  Scatter map of the caculated stress vs measured stress
Fig.7  Schematic of the work-hardening rate vs flow stress
Fig.8  Work hardening rate vs flow stress curves at 300℃ and 0.01 s-1
Fig.9  dθ/dσvs true stress curves at 300℃ and 0.01 s-1
Fig.10  Linear fit of εcvsεp
Fig.11  XDRXvs true strain curves
Fig.12  Linear fit of dynamic recrystallization material constants
[1] Wang X G, Liu J L, Zhao X C, et al. Micro extrusion of ultrafine grained titanium prepared by ECAP [J]. J. Wuhan Univ. Technol., 2017, 32: 437
[2] Shan D B, Xu J, Wang C J, et al. The state of the art in plastic micro-forming [J]. Mater. China, 2016, 35: 251
[2] 单德彬, 徐杰, 王春举等. 塑性微成形技术研究进展 [J]. 中国材料进展, 2016, 35: 251
[3] Xu J, Li J W, Zhu X C, et al. Microstructural evolution at micro/meso-scale in an ultrafine-grained pure aluminum processed by equal-channel angular pressing with subsequent annealing treatment [J]. Materials, 2015, 8: 7447
[4] Zhang X H, Wang H Y, Scattergood R O, et al. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn [J]. Acta Mater., 2002, 50: 4823
[5] Sajadifar S V, Yapici G G, Demler E, et al. Cyclic deformation response of ultra-fine grained titanium at elevated temperatures [J]. Int. J. Fatig., 2019, 122: 228
[6] Yang X R, Chen X L, Luo L, et al. Creep behavior of ultra-fine grained CP Ti processed by combined deformation at room temperature [J]. Rare Met. Mater. Eng., 2018, 47: 2126
[6] 杨西荣, 陈小龙, 罗雷等. 复合加工制备的超细晶工业纯钛室温蠕变行为 [J]. 稀有金属材料与工程, 2018, 47: 2126
[7] Liu X Y, Zhao X C, Yang X R, et al. Hot compression deformation behavior of as-ECAPed CP-Ti at room temperature with 120° die [J]. Rare Met. Mater. Eng., 2012, 41: 667
[7] 刘晓燕, 赵西成, 杨西荣等. 120°模具室温ECAP制备工业纯钛的热压缩变形行为 [J]. 稀有金属材料与工程, 2012, 41: 667
[8] Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49: 2567
[9] Ning J Q, Nguyen V, Liang S Y. Analytical modeling of machining forces of ultra-fine-grained titanium [J]. Int. J. Ad. Manuf. Technol., 2019, 101: 627
[10] Liu X H, Zou W J, Fu H D, et al. Cu/Ti bimetal composite pi-pe fabricated by heating rotary swaging forming and its interface, microstructure and properties [J]. Chin. J. Rare Met., 2017, 21: 364
[10] 刘新华, 邹文江, 付华栋等. 铜/钛双金属复合管的热旋锻制备及其界面组织性能 [J]. 稀有金属, 2017, 21: 364
[11] Mao W M, Zhao X B. Metal Recrystallization and Grain Gr-owth [M]. Beijing: Metallurgical Industry Press, 1994: 29
[11] 毛卫民, 赵新兵. 金属的再结晶与晶粒长大 [M]. 北京: 冶金工业出版社, 1994: 29
[12] Zhang L, Meng Z Q, Shi M J, et al. Dynamic recrystallization behavior of 65Mn steel [J]. Heat Treat. Met., 2018, 43(5): 39
[12] 刘 乐, 孟子祺, 石妙杰等. 65Mn钢的动态再结晶行为 [J]. 金属热处理, 2018, 43(5): 39
[13] Tian S W, Jiang H T, Guo W Q, et al. Hot deformation and dynamic recrystallization behavior of TiAl-based alloy [J]. Intermetallics, 2019, 112: 106521
[14] Souza P M, Hodgson P D, Rolfe B, et al. Effect of initial microstructure and beta phase evolution on dynamic recrystallization behaviour of Ti6Al4V alloy - An EBSD based investigation [J]. J. Alloys Compd., 2019, 793: 467
[15] Wan Z P, Sun Y, Hu L X, et al. Modeling of the critical conditions on dynamic recrystallization for tial-based alloy [J]. Rare Met. Mater. Eng., 2018, 47: 835
[15] 万志鹏, 孙 宇, 胡连喜等. TiAl基合金动态再结晶临界模型建立 [J]. 稀有金属材料与工程, 2018, 47: 835
[16] Ouyang D L, Cui X, Lu S Q, et al. Hot compressive deformation and dynamic recrystallization of as-forged Ti-alloy TB6 during β process [J]. Chin. J. Mater. Res., 2019, 33: 218
[16] 欧阳德来, 崔 霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33: 218
[17] Liu L J, Lv M, Wu W G. Recrystallization softening effect in the improved constitutive equation for TI-6AL-4V alloy [J]. Rare Met. Mater. Eng., 2014, 43: 1367
[17] 刘丽娟, 吕 明, 武文革. 再结晶软化效应对Ti-6Al-4V修正本构的影响 [J]. 稀有金属材料与工程, 2014, 43: 1367
[18] Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression [J]. J. Alloys Compd., 2019, 795: 471
[19] Xie C. Compression deformation behaviors of CP-Ti processed by ECAP at room temperature using a 90° die [D]. Xi'an: Xi'an University of Architecture and Technology, 2013.
[19] 解晨. 90°模具室温ECAP变形工业纯钛的热压缩行为研究 [D]. 西安: 西安建筑科技大学, 2013
[20] Beausir B, Tóth L S, Neale K W. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear [J]. Acta Mater., 2007, 55: 2695
[21] Qiang M. Effects of initial microstructure on microstructure and properties of pure Ti processed by ECAP [D]. Xi'an: Xi'an University of Architecture and Technology, 2018
[21] 强 萌. 原始组织对ECAP变形纯钛组织性能影响研究 [D]. 西安: 西安建筑科技大学, 2018
[22] Kotkunde N, Deole A D, Gupta A K, et al. Comparative study of constitutive modeling for Ti-6Al-4V alloy at low strain rates and elevated temperatures [J]. Mater. Des., 2014, 55: 999
[23] Kim M H, Lee J W, Kim S W, et al. Evaluation of the hot workability of commercially pure Ti using hot torsion tests [J]. J. Nanosci. Nanotechnol., 2019, 19: 1772
[24] Liu J, Cui Z S, Ruan L Q. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, 529A: 300
[25] Zhang P, Yi C, Chen G, et al. Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy [J]. Metals, 2016, 6: 161
[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] LIU Chao, WANG Xin, MEN Yue, ZHANG Haoyu, ZHANG Siqian, ZHOU Ge, CHEN Lijia, LIU Haijian. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression[J]. 材料研究学报, 2021, 35(8): 583-590.
[3] YANG Jingcheng, WANG Lizhong, ZHONG Zhiping, ZHENG Yingjun. Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization[J]. 材料研究学报, 2021, 35(4): 284-292.
[4] SU Nan, CHEN Minghe, XIE Lansheng, LUO Feng, SHI Wenxiang. Dynamic Mechanical Characteristics and Constitutive Model of TC2 Ti-alloy[J]. 材料研究学报, 2021, 35(3): 201-208.
[5] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[6] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[7] WANG Wei, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Meng, ZHANG Xiaofeng, WANG Kuaishe. Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting[J]. 材料研究学报, 2020, 34(9): 665-673.
[8] CHENG Xiaonong, GUI Xiang, LUO Rui, XU Guifang, YUAN Zhizhong, ZHOU Yuseng, GAO Pei. Dynamic Recrystallization Behavior and Kinetics Model of a New Developed Austenitic Heat Resistant Steel CHDG-A[J]. 材料研究学报, 2020, 34(8): 611-620.
[9] WANG Jingzhong, DING Kailun, YANG Xirong, LIU Xiaoyan. Thermodynamical Explanation for Abnormal Dynamic Softening Rate of Ti-62A Alloy and Constitutive Equation of Strain Compensation[J]. 材料研究学报, 2020, 34(6): 401-409.
[10] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[11] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[12] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[13] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[14] Lixin WANG,Huabing LI,Guoping LI,Zhengyou TANG,Ming MA. Microstructural Evolution and Flow Behavior of 2205 and 2507 Duplex Stainless Steel during Double Pass Hot Compressive Deformation[J]. 材料研究学报, 2016, 30(12): 888-896.
[15] SHEN Yinan CHEN Huahui HU Yu. The grain composition’s influence on the performance of the porous ceramic[J]. 材料研究学报, 2011, 25(5): 550-556.
No Suggested Reading articles found!