Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (4): 271-276    DOI: 10.11901/1005.3093.2018.519
Current Issue | Archive | Adv Search |
Liquid Synthesis and Characterization of Nanosized Cubic Lithium Fluoride Particles
Lielin WANG1(),Yang ZENG1,Hua XIE1,Sihao DENG1,Xingping LI1,Facheng YI1,Shuqing JIANG2,Yinhang ZHOU2
1. Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Cite this article: 

Lielin WANG,Yang ZENG,Hua XIE,Sihao DENG,Xingping LI,Facheng YI,Shuqing JIANG,Yinhang ZHOU. Liquid Synthesis and Characterization of Nanosized Cubic Lithium Fluoride Particles. Chinese Journal of Materials Research, 2019, 33(4): 271-276.

Download:  HTML  PDF(4352KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nanosized particles of LiF were successfully prepared via liquid synthesis method with ammonium fluoride and lithium hydroxide as raw materials, anhydrous ethanol as solvent and crystallization-controlling agent. The structure and morphology of LiF particles were characterized by means of XRD, SEM, TEM and particle size analyzer. The precursor mainly composes of LiF, NH4F and LiOH·H2O. The thermal analysis of the precursor indicates that the decomposition temperature of ammonium fluoride is about 190°C. Nano-powders of LiF has a single cubic crystallographic structure after calcinations at 220~400℃. The nano-LiF particles with average size of about 80nm are full in crystallinity, uniform in size and good in shape.

Key words:  inorganic non-metallic materials      nanometer lithium fluoride      liquid synthesis method      cubic crystal structure     
Received:  23 August 2018     
ZTFLH:  TQ174  
Fund: National Natural Science Foundation of China(21101129);Nuclear Energy Development Project(90509160001);Sichuan Science and Technology Program(2018JY0449);Sichuan Science and Technology Program(17CZ0037)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.519     OR     https://www.cjmr.org/EN/Y2019/V33/I4/271

Fig.1  X-ray diffraction pattern of LiF precursor
Fig.2  SEM image of the precursor
Fig.3  TG/DTA curves of lithium fluoride precursors
Fig.4  XRD patterns of lithium fluoride samples prepared at different calcination temperatures
Fig.5  Microstructure of the preparation of lithium fluoride samples of different calcination temperature (a)220℃, (b) 300℃, (c) 400℃
Fig.6  SEM image and particle size distribution of LiF powder samples
Calcination conditionCrystal size/nm
150℃+220℃/6 h60.7
150℃+300℃/6 h65.4
150℃+400℃/6 h58.5
Table 1  Grain size of the product at different removal temperatures
Fig.7  EDS analysis image of LiF samples
ElementsMass fraction/%Atomic fraction/%
C K1.373.26
O K1.572.81
F K61.4792.61
Al K0.600.64
Si K0.560.57
K K0.150.11
Totals65.73100
Table 2  Results of EDS analysis for LiF samples
Fig.8  TEM (a) image and SAED image (b) of LiF powder
[1] ZhouL J, LeZ Q. Inorganic Salt Industry Manual [M]. 2nd ed. Beijing: Chemical Industry Press, 1996
[1] (周连江, 乐志强. 无机盐工业手册 [M]. 2版. 北京: 化学工业出版社, 1996)
[2] ShuW F, GaoY, DengZ H, et al. Preparation method of ultra-pure and highly active battery grade lithium fluoride [J]. Mod. Chem. Ind., 2017, 37(2): 141
[2] (舒伟锋, 高 月, 邓支华等. 超纯高活性电池级氟化锂的制备方法 [J]. 现代化工, 2017, 37(2): 141)
[3] JiangC Y. Growth of LiF crystal [J]. J. Synthetic Cryst., 1979, (4): 1
[3] (蒋崇义. 氟化锂晶体生长 [J]. 人工晶体学报, 1979, (4): 1)
[4] KongB G, ChenR F. The research of growing large size LiF single crystal by the czockralski method [J]. Opt. Instrum., 1995, 17(3): 12
[4] (孔宝国, 陈瑞芳. 提拉法生长大尺寸氟化锂单晶体的研究 [J]. 光学仪器, 1995, 17(3): 12)
[5] JiS G, LiY H. Preparation of optical crystal used in vacuum ultraviolet band [J]. J. Synthetic Cryst., 2000, 29(S1): 108
[5] (纪慎功, 李艳红. 真空紫外波段光学晶体材料的研制 [J]. 人工晶体学报, 2000, 29(S1): 108)
[6] FanZ D, WangQ T, YinL J, et al. Research progress of LiF crystal [J]. Bull. Chin. Ceram. Soc., 2010, 29: 893
[6] (范志达, 王强涛, 尹利君等. 氟化锂晶体的研究进展 [J]. 硅酸盐通报, 2010, 29: 893)
[7] XuW, WuX Y. Application of fluoride lithium crystal dosimeter in NPP environmental dose monitoring in China [J]. Radiat. Prot. Bull., 2016, 36(3): 10
[7] (徐 伟, 乌晓燕. 氟化锂晶体剂量计用于我国核电站环境热点剂量监测 [J]. 辐射防护通讯, 2016, 36(3): 10)
[8] KnollG F. Radiation detection and measurement [J]. Proceedings of the IEEE, 2010, 69: 495
[9] FranceschiniF, RuddyF H. Properties and applications of silicon carbide: silicon carbide neutron detectors [M]. Rijeka: InTech Europe, 2011
[10] ZhangJ, WangY P, GuoY, et al. Determination of measuring and annealing methods for LiF(Mg, Cu, P) thermoluminescence detectors [J]. Radiat Prot, 2003, 23(2): 122
[10] (张 建, 王亚平, 郭 勇等. LiF(Mg, Cu, P)热释光探测器测量、退火方式的确定. 辐射防护, 2003, 23(2): 122)
[11] LiuH X. Lithium fluoride research progress of production [J]. Light Met., 2011, (3): 11
[11] (刘海霞. 氟化锂生产工艺研究进展 [J]. 轻金属, 2011, (3): 11)
[12] LiuM G, WangM H, TangS K. Preparation and analysis of high-purity lithium fluoride [J]. Chin. Nucl. Sci. Tech. Rep., 1999: 381
[12] (刘妙根, 王茂涵, 唐书凯. 高纯氟化锂的制备与分析 [J]. 中国核科技报告, 1999: 381)
[13] GoodenoughR D, JonesG D, AndersonR E. Recovery of lithium from lithiumbearing ores [P]. USA, 3295920, 1963
[14] GoodenoughR D. Lithium fluoride production [P]. USA, US3179495, 1965
[15] LiS Y, TengX G, ShaS P, et al. Review of preparation and analysis of high-purity LiF [J]. Ind. Miner. Process., 2006, 35(3): 34
[15] (李世友, 滕祥国, 沙顺萍等. 高纯氟化锂的制备与分析方法评述 [J]. 化工矿物与加工, 2006, 35(3): 34)
[16] YuJ K. Progress in synthesis of high purity lithium fluoride [J]. Inorg. Chem. Ind., 2011, 43(5): 15
[16] (于剑昆. 高纯氟化锂的合成工艺进展 [J]. 无机盐工业, 2011, 43(5): 15)
[17] HuQ Y, LiX H, WangZ X, et al. Process for producing high purity nano-lithium fluoride [P]. Chin Pat, 101195495, 2008
[17] (胡启阳, 李新海, 王志兴等. 高纯纳米氟化锂的制备方法 [P]. 中国专利, 101195495, 2008)
[18] LuoC L, GongY, HanM. Formation of nanometer-sized LIF microclters and their properties of fractal aggregation [J]. J. Nanjing Univ . (Nat. Sci.), 1994, 17(3): 19
[18] (罗成林, 龚艳春, 韩 民. LiF纳米微簇的制备及其分形凝聚特征 [J]. 南京大学学报(自然科学版), 1994, 17(3): 19)
[19] BellingerS L. Advanced microstructured semiconductor neutron detectors: design, fabrication, and performance [D]. Manhattan: Kansas State University, 2011
[20] GuanR B. Practical Handbook of Chemical Reagent Standards: Inorganic Reagent Fascicle [M]. Beijing: Standards Press of China, 2011
[20] (关瑞宝. 化学试剂标准实用手册: 无机试剂分册 [M]. 北京: 中国标准出版社, 2011)
[21] LangfordJ I, WilsonA J C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size [J]. J. Appl. Crystallogr., 1978, 11: 102
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!