|
|
Structure and Properties of Epoxy Modified PLA/Low Melting Point PA6 Composites |
Mingzhuan LI1,2,Xiaoying HU1,2,Min HE1,2,Jie YU2,Shengjun LU1,2( ) |
1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China 2. National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China |
|
Cite this article:
Mingzhuan LI,Xiaoying HU,Min HE,Jie YU,Shengjun LU. Structure and Properties of Epoxy Modified PLA/Low Melting Point PA6 Composites. Chinese Journal of Materials Research, 2019, 33(4): 261-270.
|
Abstract Composites of epoxy resin modified polylactic acid (ePLA)/low melting point nylon 6 (LMPA6) were prepared via method of “melting extrusion—hot stretching—quenching”. The crystallization behavior, thermal, rheological and mechanical properties of the composites were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA), rheometer and electronical stretching machine. Results show that the addition of LMPA6 changed the crystal structure of PLA, and further significantly changed the cold crystallization temperature and melting temperature of cold crystallization of the composite; The addition of LMPA6 could enhance the thermal stability and the glass transition temperature (Tg) of the ePLA/LMPA6 composites, while the storage modulus (G') decrease nonlinearly when the strain (γ) exceeds the critical strain (γC), namely the “Payne” effect appeared; The composites exhibited the characteristics of non-Newtonian fluids—"shear thinning", and which was more pronounced with the increasing content of LMPA6; When the LMPA6 content was 7%, the microfibrous structure appeared in the composite, thereby which exhibited the best compatibility; The addition of LMPA6 could enhance the strength and toughness of the composites to a certain extent, especially, when the LMPA6 content was 7%, the tensile strength (72.8 MPa) and the impact strength (5.0 kJ/m2) reached the extreme value, which were 10.8% and 78.6% higher than that of modified PLA (65.7 MPa, 2.8 kJ/m2), respectively.
|
Received: 03 September 2018
|
|
Fund: National Natural Science Foundation of China(51563002);Guizhou Province "100-level" Innovative Talents Project, Qianke Union Platform Talent([2016]5653) |
[1] | YvonG. Polyamide 6 composites reinforced with silicon nitride whiskers: synthesis, interface interaction, and mechanical properties [J]. J. Appl. Polym. Sci., 2010, 115(6): 3376 | [2] | LiC L, DouQ. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly (lactic acid): Effect of dilithium hexahydrophthalate as a novel nucleating agent [J]. Thermochim. Acta., 2014, 594: 31 | [3] | VinkE T H, RabagoK R, GlassnerD A, et al. Applications of life cycle assessment to NatureWorks? polylactide (PLA) production [J]. Polym. Degrad. Stabil., 2003, 80(3): 403 | [4] | MoazeniN, MohamadZ, DehbariN. Study of silane treatment on poly-lactic acid(PLA)/sepiolite nanocomposite thin films [J]. J. Appl. Polym. Sci., 2015, 132(6): 1 | [5] | SunL Y, WarrenG L, DavisD, et al. Nylon toughened epoxy/SWCNT composites [J]. J. Mater. SCI., 2011, 46(1): 207 | [6] | LiY J, ShimizuH. Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing [J]. Macromolecules, 2009, 42(7): 2587 | [7] | KawamotoN, SakaiA, HorikoshiT, et al. Nucleating agent for poly (L-lactic acid) & mdash; An optimization of chemical structure of hydrazide compound for advanced nucleation ability [J]. J. Appl. Polym. Sci., 2010, 103(1): 198 | [8] | WootthikanokkhanJ, CheachunT, SombatsompopN, et al. Crystallization and thermomechanical properties of PLA composites: Effects of additive types and heat treatment [J]. J. Appl. Polym. Sci., 2013, 129(1): 215 | [9] | ShiN, DouQ. Crystallization behavior, morphology, and mechanical properties of poly (lactic acid)/tributyl citrate/treated calcium carbonate composites [J]. Polym. Composite., 2014, 35(8): 1570 | [10] | ShibataM, InoueY, MiyoshiM. Mechanical properties, morphology, and crystallization behavior of blends of poly (l-lactide) with poly (butylene succinate-co-l-lactate) and poly (butylene succinate) [J]. Polymer, 2006, 47(10): 3557 | [11] | WangY L, HuX, LiH, et al. Polyamide-6/Poly (lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-octene elastomer [J]. J. Polym. Sci. Polym. Proc., 2010, 49(12): 1241 | [12] | BaiZ F, DouQ. Rheology, morphology, crystallizationbehaviors , mechanical and thermal properties of poly (lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends [J]. J. Polym. Envoron., 2018, 26(3): 959 | [13] | ZhangL, YangJ M, FengC W, et al. Structure and properties of surface composite nano-SiO2 and carbon nanotube glass fiber reinforced nylon 6 [J]. Acta Polymerica Sinica, 2010, 1(11): 1333 | [13] | (张 玲, 杨建民, 冯超伟等. 表面复合纳米SiO2和碳纳米管玻璃纤维增强尼龙6的结构与性能 [J]. 高分子学报, 2010, 1(11): 1333) | [14] | HuX Y, ZhengQ, LiuD X, et al. Crystallization behavior and rheological properties of epoxy resin modified low melting nylon 6 composites[J]. Polymer Materials Science and Engineering, 2016, 32(8): 69 | [14] | (胡孝迎, 郑 强, 刘典新等. 环氧树脂改性低熔点尼龙6复合材料的结晶行为与流变性能 [J]. 高分子材料科学与工程, 2016, 32(8): 69) | [15] | LuS J, GanH H, LiY, et al. Polymer blends of poly(vinyl chloride) and lower-melting point polyamide-6 compatibilized by epoxy [J]. Adva. Mater. Res., 2012, 550: 882 | [16] | LuS J, ZhouM, YuJ, et al. Study on the influence of crystal structures on the performance of low-melting polyamide 6 [J]. Polym-Plast. Technol., 2013, 52(2): 157 | [17] | HuX Y, ZhengQ, WangC H, et al. Crystallization and properties of nylon 6/potassium chloride composite [J]. Acta Polymerica Sinica, 2016, 6: 814 | [17] | (胡孝迎, 郑 强, 王彩红等. 尼龙6/氯化钾复合材料的结晶与性能 [J]. 高分子学报, 2016, 6: 814) | [18] | WangY L, LiH, DaiK, et al. Structure and properties of nylon 6/polylactic acid blends [J]. Polymer Materials Science and Engineering, 2010, 26(3): 61 | [18] | (王玉领, 李 海, 代坤等. 尼龙6/聚乳酸共混物的结构及性能 [J]. 高分子材料科学与工程. 2010, 26(3): 61) | [19] | XieH H, ZhouZ F, XuW B. Epoxy chain extended carboxy lactic acid prepolymer [J]. Plastic, 2011, 40(4): 21 | [19] | (谢辉辉, 周正发, 徐卫兵. 环氧扩链端羧基乳酸预聚物 [J]. 塑料, 2011, 40(4): 21) | [20] | GulS, KausarA, MehmoodM, et al. Progress on epoxy/polyamide and inorganic nanofiller-based hybrids: introduction, application, and future potential [J]. Polym-Plast. Technol., 2016, 55(17): 1842 | [21] | LiQ F, TianM, FengW, et al. Mechanical properties and toughening mechanism of nylon 11/MBS/epoxy resin blend alloy [J]. Polymer Materials Science and Engineering, 2001, 17(4): 57 | [21] | (李齐方, 田 明, 冯 威等. 尼龙11/MBS/环氧树脂共混合金的力学性能和增韧机理 [J]. 高分子材料科学与工程. 2001, 17(4): 57) | [22] | HanL L, DuanY X. Effect of compatibilizer on mechanical properties of polylactic acid/nylon 610 [J]. Plastic Industry, 2014, 42(5): 42 | [22] | (韩丽丽, 段咏欣. 增容剂对聚乳酸/尼龙610力学性能的影响 [J]. 塑料工业. 2014, 42(5): 42) | [23] | JiD Y, LiuZ Y, LanX R, et al. Crystallization behavior of PLA/PBS/DCP reaction blends [J]. Acta Polymerica Sinica, 2012, 7: 694 | [23] | (季得运, 刘正英, 兰小蓉等. PLA/PBS/DCP反应共混体系的结晶行为研究 [J]. 高分子学报, 2012, 7: 694) | [24] | WangL P, HouJ R, DuanY X, et al. Effect of interfacial compatibilizer on properties of nitrile rubber toughened polylactic acid system [J]. Acta Polymerica Sinica, 2014, 7: 914 | [24] | (王利平, 侯家瑞, 段咏欣等. 界面增容剂对丁腈橡胶增韧聚乳酸体系性能的影响 [J]. 高分子学报, 2014, 7: 914) | [25] | ZhangC M, HuangY, DanY. Reactive blending natural rubber toughened polylactic acid [J]. Polymer Materials Science and Engineering, 2016, 32(6): 171 | [25] | (张春梅, 黄 云, 淡宜. 反应性共混天然橡胶增韧聚乳酸 [J]. 高分子材料科学与工程, 2016, 32(6): 171) | [26] | LiuJ, DaiJ L, XuH L, et al. Morphological structure and mechanical properties of PET-MFIAA/ PP in-situ fiber-forming composites [J]. Acta Materiae Compositae Sinica, 2009, 26(1): 31 | [26] | (刘 俊, 代佳丽, 徐慧玲等. PET-MFIAA/PP原位成纤复合材料的形态结构及力学性能 [J]. 复合材料学报, 2009, 26(1): 31) | [27] | PayneA R, WhittakerR E, SmithJ F. Effect of vulcanization on the low-strain dynamic properties of filled rubbers [J]. J. Appl. Polym. Sci., 2010, 16(5): 1191 | [28] | HeP S. Newly Structure and Properties of High Polymer [M]. Beijing: Science Press, 2009 | [28] | (何平笙. 新编高聚物的结构与性能 [M]. 北京: 科学出版社, 2009) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|