Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (4): 261-270    DOI: 10.11901/1005.3093.2018.533
Current Issue | Archive | Adv Search |
Structure and Properties of Epoxy Modified PLA/Low Melting Point PA6 Composites
Mingzhuan LI1,2,Xiaoying HU1,2,Min HE1,2,Jie YU2,Shengjun LU1,2()
1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2. National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
Cite this article: 

Mingzhuan LI,Xiaoying HU,Min HE,Jie YU,Shengjun LU. Structure and Properties of Epoxy Modified PLA/Low Melting Point PA6 Composites. Chinese Journal of Materials Research, 2019, 33(4): 261-270.

Download:  HTML  PDF(8042KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of epoxy resin modified polylactic acid (ePLA)/low melting point nylon 6 (LMPA6) were prepared via method of “melting extrusion—hot stretching—quenching”. The crystallization behavior, thermal, rheological and mechanical properties of the composites were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA), rheometer and electronical stretching machine. Results show that the addition of LMPA6 changed the crystal structure of PLA, and further significantly changed the cold crystallization temperature and melting temperature of cold crystallization of the composite; The addition of LMPA6 could enhance the thermal stability and the glass transition temperature (Tg) of the ePLA/LMPA6 composites, while the storage modulus (G') decrease nonlinearly when the strain (γ) exceeds the critical strain (γC), namely the “Payne” effect appeared; The composites exhibited the characteristics of non-Newtonian fluids—"shear thinning", and which was more pronounced with the increasing content of LMPA6; When the LMPA6 content was 7%, the microfibrous structure appeared in the composite, thereby which exhibited the best compatibility; The addition of LMPA6 could enhance the strength and toughness of the composites to a certain extent, especially, when the LMPA6 content was 7%, the tensile strength (72.8 MPa) and the impact strength (5.0 kJ/m2) reached the extreme value, which were 10.8% and 78.6% higher than that of modified PLA (65.7 MPa, 2.8 kJ/m2), respectively.

Key words:  composites      polylactic acid      epoxy resin      low melting point nylon 6      rheological behavior      toughening     
Received:  03 September 2018     
ZTFLH:  TQ323  
Fund: National Natural Science Foundation of China(51563002);Guizhou Province "100-level" Innovative Talents Project, Qianke Union Platform Talent([2016]5653)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.533     OR     https://www.cjmr.org/EN/Y2019/V33/I4/261

Sample

ePLA

/%

LMPA6

/%

Antioxidant 1010

/%

DCP

/%

ePLA/LMPA6 (0%)10000.50.5
ePLA/LMPA6 (1%)9910.50.5
ePLA/LMPA6 (3%)9730.50.5
ePLA/LMPA6 (5%)9550.50.5
ePLA/LMPA6 (7%)9370.50.5
Table 1  Composition of ePLA/LMPA6 composites
Fig.1  The structure of the ePLA/PA6 composites (a) re-action mechanism diagram of PLA-PA6 cross-linked structure produced by DCP, (b) reaction mechanism diagram of epoxy group with PLA and PA6, (c) reaction mechanism diagram of PLA-PA6 crosslinked structure with epoxy functional group
Fig.2  SEM micrographs of ePLA/LMPA6 composites (a) without epoxy resin, (b) without DCP, (c) 1 phr of LMPA6, (d) 3 phr of LMPA6, (e) 5 phr of LMPA6, (f) 7 phr of LMPA6
Fig.3  XRD curves of ePLA/LMPA6 composites with different LMPA6 contents
Fig.4  DSC curves of ePLA/LMPA6 composites with different LMPA6 contents (a) the first rising temperature curve, (b) the crystallization curve, (c) the melting curve
LMPA6 contentTp/℃Tc0/℃Tcc/℃Tm/℃ΔHcc/J·g-1ΔHm/J·g-1Xc/%D/℃
092.30110.3092.25165.522.1328.7428.4218.00
193.03105.4692.29165.802.3627.7827.3012.43
390.22102.0095.05163.4112.0328.9218.6011.78
590.69102.0094.26161.828.3226.5720.9311.31
791.85105.9193.17162.255.7924.3020.0814.06
Table 2  DSC dates of ePLA/LMPA6 composites with different LMPA6 contents
Fig.5  TG curves of ePLA/LMPA6 composites with different LMPA6 contents (a) 0%, (b) 1%, (c) 3%, (d) 5%, (e) 7%
Fig.6  Dynamic mechanical curves of ePLA/LMPA6 composites with different LMPA6 contents (a) the storage modulus (G') as a function of temperature, (b) the loss factor (tanδ) as a function of temperature
Fig.7  Curves of storage modulus G' versus strain (γ) for ePLA/LMPA6 composites with different LMPA6 contents
Fig.8  Curves of storage modulus (G'), loss modulus (G″) versus frequency (ω) of ePLA/LMPA6 with different LMPA6 contents
Fig.9  Shear viscosity (η) versus shear rate (γ) of ePLA/LMPA6 composites with different LMPA6 contents
Fig.10  The mechanical properties of ePLA/LMPA6 composites with different LMPA6 contents (a) the graph of impact intensity, (b) the graph of tensile strength and elongation at break
[1] YvonG. Polyamide 6 composites reinforced with silicon nitride whiskers: synthesis, interface interaction, and mechanical properties [J]. J. Appl. Polym. Sci., 2010, 115(6): 3376
[2] LiC L, DouQ. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly (lactic acid): Effect of dilithium hexahydrophthalate as a novel nucleating agent [J]. Thermochim. Acta., 2014, 594: 31
[3] VinkE T H, RabagoK R, GlassnerD A, et al. Applications of life cycle assessment to NatureWorks? polylactide (PLA) production [J]. Polym. Degrad. Stabil., 2003, 80(3): 403
[4] MoazeniN, MohamadZ, DehbariN. Study of silane treatment on poly-lactic acid(PLA)/sepiolite nanocomposite thin films [J]. J. Appl. Polym. Sci., 2015, 132(6): 1
[5] SunL Y, WarrenG L, DavisD, et al. Nylon toughened epoxy/SWCNT composites [J]. J. Mater. SCI., 2011, 46(1): 207
[6] LiY J, ShimizuH. Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing [J]. Macromolecules, 2009, 42(7): 2587
[7] KawamotoN, SakaiA, HorikoshiT, et al. Nucleating agent for poly (L-lactic acid) & mdash; An optimization of chemical structure of hydrazide compound for advanced nucleation ability [J]. J. Appl. Polym. Sci., 2010, 103(1): 198
[8] WootthikanokkhanJ, CheachunT, SombatsompopN, et al. Crystallization and thermomechanical properties of PLA composites: Effects of additive types and heat treatment [J]. J. Appl. Polym. Sci., 2013, 129(1): 215
[9] ShiN, DouQ. Crystallization behavior, morphology, and mechanical properties of poly (lactic acid)/tributyl citrate/treated calcium carbonate composites [J]. Polym. Composite., 2014, 35(8): 1570
[10] ShibataM, InoueY, MiyoshiM. Mechanical properties, morphology, and crystallization behavior of blends of poly (l-lactide) with poly (butylene succinate-co-l-lactate) and poly (butylene succinate) [J]. Polymer, 2006, 47(10): 3557
[11] WangY L, HuX, LiH, et al. Polyamide-6/Poly (lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-octene elastomer [J]. J. Polym. Sci. Polym. Proc., 2010, 49(12): 1241
[12] BaiZ F, DouQ. Rheology, morphology, crystallizationbehaviors , mechanical and thermal properties of poly (lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends [J]. J. Polym. Envoron., 2018, 26(3): 959
[13] ZhangL, YangJ M, FengC W, et al. Structure and properties of surface composite nano-SiO2 and carbon nanotube glass fiber reinforced nylon 6 [J]. Acta Polymerica Sinica, 2010, 1(11): 1333
[13] (张 玲, 杨建民, 冯超伟等. 表面复合纳米SiO2和碳纳米管玻璃纤维增强尼龙6的结构与性能 [J]. 高分子学报, 2010, 1(11): 1333)
[14] HuX Y, ZhengQ, LiuD X, et al. Crystallization behavior and rheological properties of epoxy resin modified low melting nylon 6 composites[J]. Polymer Materials Science and Engineering, 2016, 32(8): 69
[14] (胡孝迎, 郑 强, 刘典新等. 环氧树脂改性低熔点尼龙6复合材料的结晶行为与流变性能 [J]. 高分子材料科学与工程, 2016, 32(8): 69)
[15] LuS J, GanH H, LiY, et al. Polymer blends of poly(vinyl chloride) and lower-melting point polyamide-6 compatibilized by epoxy [J]. Adva. Mater. Res., 2012, 550: 882
[16] LuS J, ZhouM, YuJ, et al. Study on the influence of crystal structures on the performance of low-melting polyamide 6 [J]. Polym-Plast. Technol., 2013, 52(2): 157
[17] HuX Y, ZhengQ, WangC H, et al. Crystallization and properties of nylon 6/potassium chloride composite [J]. Acta Polymerica Sinica, 2016, 6: 814
[17] (胡孝迎, 郑 强, 王彩红等. 尼龙6/氯化钾复合材料的结晶与性能 [J]. 高分子学报, 2016, 6: 814)
[18] WangY L, LiH, DaiK, et al. Structure and properties of nylon 6/polylactic acid blends [J]. Polymer Materials Science and Engineering, 2010, 26(3): 61
[18] (王玉领, 李 海, 代坤等. 尼龙6/聚乳酸共混物的结构及性能 [J]. 高分子材料科学与工程. 2010, 26(3): 61)
[19] XieH H, ZhouZ F, XuW B. Epoxy chain extended carboxy lactic acid prepolymer [J]. Plastic, 2011, 40(4): 21
[19] (谢辉辉, 周正发, 徐卫兵. 环氧扩链端羧基乳酸预聚物 [J]. 塑料, 2011, 40(4): 21)
[20] GulS, KausarA, MehmoodM, et al. Progress on epoxy/polyamide and inorganic nanofiller-based hybrids: introduction, application, and future potential [J]. Polym-Plast. Technol., 2016, 55(17): 1842
[21] LiQ F, TianM, FengW, et al. Mechanical properties and toughening mechanism of nylon 11/MBS/epoxy resin blend alloy [J]. Polymer Materials Science and Engineering, 2001, 17(4): 57
[21] (李齐方, 田 明, 冯 威等. 尼龙11/MBS/环氧树脂共混合金的力学性能和增韧机理 [J]. 高分子材料科学与工程. 2001, 17(4): 57)
[22] HanL L, DuanY X. Effect of compatibilizer on mechanical properties of polylactic acid/nylon 610 [J]. Plastic Industry, 2014, 42(5): 42
[22] (韩丽丽, 段咏欣. 增容剂对聚乳酸/尼龙610力学性能的影响 [J]. 塑料工业. 2014, 42(5): 42)
[23] JiD Y, LiuZ Y, LanX R, et al. Crystallization behavior of PLA/PBS/DCP reaction blends [J]. Acta Polymerica Sinica, 2012, 7: 694
[23] (季得运, 刘正英, 兰小蓉等. PLA/PBS/DCP反应共混体系的结晶行为研究 [J]. 高分子学报, 2012, 7: 694)
[24] WangL P, HouJ R, DuanY X, et al. Effect of interfacial compatibilizer on properties of nitrile rubber toughened polylactic acid system [J]. Acta Polymerica Sinica, 2014, 7: 914
[24] (王利平, 侯家瑞, 段咏欣等. 界面增容剂对丁腈橡胶增韧聚乳酸体系性能的影响 [J]. 高分子学报, 2014, 7: 914)
[25] ZhangC M, HuangY, DanY. Reactive blending natural rubber toughened polylactic acid [J]. Polymer Materials Science and Engineering, 2016, 32(6): 171
[25] (张春梅, 黄 云, 淡宜. 反应性共混天然橡胶增韧聚乳酸 [J]. 高分子材料科学与工程, 2016, 32(6): 171)
[26] LiuJ, DaiJ L, XuH L, et al. Morphological structure and mechanical properties of PET-MFIAA/ PP in-situ fiber-forming composites [J]. Acta Materiae Compositae Sinica, 2009, 26(1): 31
[26] (刘 俊, 代佳丽, 徐慧玲等. PET-MFIAA/PP原位成纤复合材料的形态结构及力学性能 [J]. 复合材料学报, 2009, 26(1): 31)
[27] PayneA R, WhittakerR E, SmithJ F. Effect of vulcanization on the low-strain dynamic properties of filled rubbers [J]. J. Appl. Polym. Sci., 2010, 16(5): 1191
[28] HeP S. Newly Structure and Properties of High Polymer [M]. Beijing: Science Press, 2009
[28] (何平笙. 新编高聚物的结构与性能 [M]. 北京: 科学出版社, 2009)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[7] LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun. Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides[J]. 材料研究学报, 2023, 37(2): 95-101.
[8] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[9] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[10] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[11] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[12] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[13] LINGHU Changkai, LI Xiaolong, LUO Zhu, YANG Le, XIA Xiaosong. Triphenyl Phosphite Regulates Degradation Behavior and Properties of Polylactic Acid/Ferric Chloride Blend[J]. 材料研究学报, 2021, 35(8): 632-640.
[14] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[15] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
No Suggested Reading articles found!