Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (2): 101-109    DOI: 10.11901/1005.3093.2020.409
ARTICLES Current Issue | Archive | Adv Search |
Effect of Pre-corrosion by Salt Spray on Extremely Low Cycle Fatigue Performance of HRB400E Seismic Steel Bar
CHEN Lifei1, LUO Yunrong1(), ZHANG Yingqian2, LI Hui1, LI Xiulan1, LIAO Wenli3
1.College of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
2.College of Civil Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
3.College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Download:  HTML  PDF(5266KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of pre-corrosion by salt spray on the extremely-low cycle fatigue performance of HRB400E steel was studied. The steel samples were firstly subjected to salt spray corrosion with NaCl solution for 30~90 days, and then subjected to extremely-low cycle fatigue test via an axial displacement control facility to simulate the strong earthquake loading. Therewith, the relationship between the loading and cycle numbers, as well as the strain-life curves were obtained. Finally, the fracture faces were characterized by scanning electron microscope (SEM). The results show that the decline rates of life after pre-corrosion for 30 days, 60 days and 90 days were 4.4%~10.2%, 14.3%~31.8% and 7.8%~30%, respectively. The crack initiation life accounts for 90% of the total life, and the strain amplitude of 3% is the turning point between ultra-low cycle and low cycle fatigue. Salt spray corrosion has no obvious effect on the cyclic response characteristics and Masing characteristics of the test material. At last, the fracture zone was crescent-shaped along the edge of the test material. Longer salt spray corrosion time and higher strain amplitude would lead to dimples in the final fracture zone.

Key words:  metallic materials      HRB400E seismic steel bar      salt spray pre-corrosion      extremely low cycle fatigue (ELCF)      microscopic fracture mechanism     
Received:  28 September 2020     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51701133);Sichuan Education Department Project(16ZB0255);Key Laboratory Project of Sichuan University(2018QYJ03)
Corresponding Authors:  LUO Yunrong     E-mail:  510862595@qq.com

Cite this article: 

CHEN Lifei, LUO Yunrong, ZHANG Yingqian, LI Hui, LI Xiulan, LIAO Wenli. Effect of Pre-corrosion by Salt Spray on Extremely Low Cycle Fatigue Performance of HRB400E Seismic Steel Bar. Chinese Journal of Materials Research, 2021, 35(2): 101-109.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.409     OR     https://www.cjmr.org/EN/Y2021/V35/I2/101

SSiMnCPFe
0.0290.3401.4400.2200.021Bal.
Table 1  Chemical composition of HRB400E steel bar (mass fraction, %)

Yield strength,

Rel/MPa

Tensile strength,

Rm/MPa

Elongation

at break,

A/%

Modulus of elasticity,

E/MPa

≥400≥540≥162×105
Table 2  Mechanical properties of HRB400E steel bar
Corrosion time/dεa/%εpaεeaNfΔWp/MJ·m-3ΔWe/MJ·m-3ΔWt/MJ·m-3
030.01570.01439821.38.229.5
3.20.0170.0159023.8932.8
3.50.01950.015561289.637.6
40.02370.01634434.310.644.9
3030.01590.01418821829
3.20.01820.01388624.67.632.2
3.50.020.0155827.4936.4
40.02520.01484036.28.744.9
6030.01670.01338420.7727.7
3.20.01840.01367222.77.330
3.50.0210.0145027.37.334.6
40.02550.01453034.18.442.5
9030.0170.0138418.76.7625.46
3.20.01850.01358320.47.2927.69
3.50.0220.0134324.76.7631.46
40.0260.0143131.87.8439.64
Table 3  ELCF test results
Fig.1  Relationships between plastic strain amplitude and total strain amplitude for different samples
Fig.2  Cyclic response characteristics of steel bar samples. (a) uncorroded and corroded for (b) 30 d, (c) 60 d, 90 d (d)
Fig.3  Variations of maximum tensile and compressive forces with cycle time, (a) εa=3%; (b) εa=3.2%
Fig.4  Strain amplitude-life curves of steel bar samples during ELCF test
Corrosion time/dεf'c

σf'

/MPa

b

k'

/MPa

n'
00.2-0.56200-0.1410240.18
300.22-0.54400-0.0849900.18
600.132-0.44000-0.0811980.22
900.12-0.373184-0.03711890.24
Table 4  ELCF parameters
Fig.5  Strain amplitude-life curves of steel bar samples during LCF and ELCF tests
Fig.6  Half life hysteresis loops for different steel bar samples. (a) uncorroded and corroded for (b) 30 d, (c) 60 d, 90 d (d)
Fig.7  Energy density vs. life curves
Fig.8  Fracture morphologies of steel bar samples. (a) uncorroded and corroded for (b) 30 d, (c) 60 d
Fig.9  Surface morphologies of final fracture zones of steel bar samples. (a, c) uncorroded and (b, d) corroded for 60 d under the strains of (a, b) 3% and (c, d) 4%
1 Sheng G M, Gong S H. Investigation of low cycle fatigue behaviour of building structural steels under earthquake loading [J]. Acta Metall. Sin. (Engl. Lett.), 1997, 10: 51
2 Peng X, Xiao Y, Wang S B, et al. Development of V-N alloyed hot rolled ribbed bar HRB400E [J]. China Metall., 2019, 29(1): 25
彭雄, 肖亚, 王绍斌等. 钒氮合金化热轧抗震钢筋HRB400E产品开发 [J]. 中国冶金, 2019, 29(1): 25
3 Gao Y K. Theory and Application of Surface Integrity [M]. Beijing: Chemical Industry Press, 2014
高玉魁. 表面完整性理论与应用 [M]. 北京: 化学工业出版社, 2014
4 Wu Q G, Chen X D, Fan Z C, et al. Corrosion fatigue behavior of FV520B steel in water and salt-spray environments [J]. Eng. Fail. Anal., 2017, 79: 422
5 Apostolopoulos C A. Mechanical behavior of corroded reinforcing steel bars S500s tempcore under low cycle fatigue [J]. Constr. Build. Mater., 2007, 21: 1447
6 Apostolopoulos C A, Papadopoulos M P. Tensile and low cycle fatigue behavior of corroded reinforcing steel bars S400 [J]. Constr. Build. Mater., 2007, 21: 855
7 Apostolopoulos C A, Papadopoulos M P, Pantelakis S G. Tensile behavior of corroded reinforcing steel bars BSt 500s [J]. Constr. Build. Mater., 2006, 20: 782
8 Fernandez I, Bairán J M, Marí A R. Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ-ε behavior [J]. Constr. Build. Mater., 2015, 101: 772
9 Xu Q Y, Fang Z Y, Lin Q T, et al. Comparative experimental study of fatigue performance of HRB500 and HRB400 reinforcing bar [J]. J. Exp. Mech., 2019, 34: 105
徐庆元, 方子匀, 林青腾等. HRB500与HRB400钢筋疲劳性能对比试验研究 [J]. 实验力学, 2019, 34: 105
10 Sun C Z, Miao C Q, Li A Q, et al. Experimental study on low cycle fatigue properties of 630 MPa high strength steel bar [J]. J. Build. Struct, doi: 10.14006/j.jzjgxb.2019.0492
孙传智, 缪长青, 李爱群等. 630 MPa级超高强钢筋低周疲劳性能试验研究 [J]. 建筑结构学报, doi: 10.14006/j.jzjgxb.2019.0492
11 Chen J Y, Lu D M, Mo D K, et al. Experimental study on elastoplastic behavior of HRB400E steel under low-cycle symmetric loading [J]. J. Exp. Mech., 2019, 34: 759
陈建云, 陆大敏, 莫德凯等. 对称拉压循环对HRB400E钢弹塑性行为影响的试验研究 [J]. 实验力学, 2019, 34: 759
12 Luo Y R, Wang Q Y, Fu L, et al. On the effect of oxidation corrosion on low-cycle fatigue properties of HRB400EIII aseismic reinforced bar [J]. J. Exp. Mech., 2015, 30: 549
罗云蓉, 王清远, 付磊等. 氧化腐蚀对HRB400EⅢ级建筑抗震钢筋低周疲劳性能的影响 [J]. 实验力学, 2015, 30: 549
13 Luo Y R, Wang Q Y, Yu Q, et al. Low cycle fatigue properties of anti-seismic HRB400 grade Ⅲ reinforcing steel bar [J]. J. Iron Steel Res., 2015, 27(6): 35
罗云蓉, 王清远, 于强等. HRB400 Ⅲ级抗震钢筋的低周疲劳性能 [J]. 钢铁研究学报, 2015, 27(6): 35
14 Chen L F, Luo Y R, Fu L, et al. Effects of salt spray corrosion on low cycle fatigue behavior and mechanical properties of HRB400E steel bar [J]. J. Iron Steel Res., doi: 10.13228/j.boyuan.issn1001-0963.20200093
谌理飞, 罗云蓉, 付磊等. 盐雾腐蚀对HRB400E抗震钢筋低周疲劳和力学性能的影响 [J]. 钢铁研究学报, doi: 10.13228/j.boyuan.issn1001-0963.20200093
15 Song M S, Kong Y Y, Ran M W, et al. Cyclic stress-strain behavior and low cycle fatigue life of cast A356 alloys [J]. Int. J. Fat., 2011, 33: 1600
16 Kliman V, Bílý M. Hysteresis energy of cyclic loading [J]. Mater. Sci. Eng., 1984, 68: 11
17 Prasad N E, Vogt D, Bidlingmaier T, et al. High temperature, low cycle fatigue behaviour of an aluminium alloy (Al-12Si-CuMgNi) [J]. Mater. Sci. Eng., 2000, 276A: 283
18 Luo Y R, Wang Q Y, Liu Y J, et al. Low cycle fatigue properties of steel structure materials Q235 and Q345 [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2012, 44(2): 169
罗云蓉, 王清远, 刘永杰等. Q235、Q345钢结构材料的低周疲劳性能 [J]. 四川大学学报(工程科学版), 2012, 44(2): 169
19 Zhan S Y, Sheng G M, Liu X D, et al. Study on high strain low cycle fatigue properties of HRB400E reinforced steel bars [J]. Hot Working Technol., 2010, 39(16): 22
詹苏宇, 盛光敏, 刘旭东等. 高强HRB400E建筑用抗震钢筋高应变低周疲劳性能研究 [J]. 热加工工艺, 2010, 39(16): 22
20 Luo Y R, Wang Q Y, Fu L, et al. On the effect of seismic frequency on extremely low cycle fatigue behaviors of Q235 steel structure material [J]. J. Exp. Mech., 2018, 33: 743
罗云蓉, 王清远, 付磊等. 地震频率对Q235钢结构材料超低周疲劳行为的影响 [J]. 实验力学, 2018, 33: 743
[1] LIU Chao, WEN Feng, CHEN Jiqiang, ZHAO Hongjin, LI Qilong, ZHOU Jianpeng. Effect of Sc and Zr Addition and Annealing Treatment on Mechanical Properties of As-cast Al-Si Alloy[J]. 材料研究学报, 2021, 35(2): 93-100.
[2] WANG Hao, ZHAO Hongfeng, KANG Jiashuang, ZHOU Yuanxiang, XIE Qingyun. Properties of ZnO Varistor Ceramics Co-doped with B2O3 and Al2O3[J]. 材料研究学报, 2021, 35(2): 110-114.
[3] CHEN Yang, TU Jian, ZHANG Yanbin, TAN Li, YIN Ruisen, ZHOU Zhiming. Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy[J]. 材料研究学报, 2021, 35(2): 143-153.
[4] DU Bangdeng, LIU Jun, WANG Xiaowan, WANG Wei, CHEN Demin. Effect of Heat Treatment on Microstructure and Al-water Reactivity of Al-Mg-Ga-In-Sn Alloys[J]. 材料研究学报, 2021, 35(1): 25-35.
[5] ZHANG Chen, HAN Weihao, GONG Yumei, YU Yang, CAO Jincheng. Synthesis of Hollow Mesoporous SiO2 and Its Adsorption Performance of Cr[J]. 材料研究学报, 2021, 35(1): 45-52.
[6] ZHANG Ming, WANG Zhiyong, LUO Qin, DAI Zhengkun, LI Yesheng, WU Ziping. Highly Activated Carbon Nanotube Sponges Deposited with Sulfur for Lithium-sulfur Batteries[J]. 材料研究学报, 2021, 35(1): 65-71.
[7] DUAN Yuanman, ZHU Lihui, WU Xiaochun, GU Bingfu. Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel[J]. 材料研究学报, 2021, 35(1): 17-24.
[8] GUI Weimin, LIU Yi, ZHANG Xiaotian, HE Liangliang, WANG Ye, WANG Yuandong, HE Erkang, WANG Mengmeng. Effect of Rare Earth Addition on Microstructure, Mechanical Property and Nitriding Performance of a Medium Carbon Steel[J]. 材料研究学报, 2021, 35(1): 72-80.
[9] WANG Wei, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Meng, ZHANG Xiaofeng, WANG Kuaishe. Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting[J]. 材料研究学报, 2020, 34(9): 665-673.
[10] WU Mengjiao, REN Zhaohui, TIAN He, HAN Gaorong. Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control[J]. 材料研究学报, 2020, 34(9): 650-658.
[11] CHEN Gang, LUO Xiaobing, CHAI Feng, YANG Caifu, ZHANG Zhengyan, YANG Zhigang. Effect of Double Quenching on Microstructure and Impact Toughness of a High Strength Low Alloy Steel[J]. 材料研究学报, 2020, 34(9): 705-711.
[12] CHENG Xiaonong, GUI Xiang, LUO Rui, XU Guifang, YUAN Zhizhong, ZHOU Yuseng, GAO Pei. Dynamic Recrystallization Behavior and Kinetics Model of a New Developed Austenitic Heat Resistant Steel CHDG-A[J]. 材料研究学报, 2020, 34(8): 611-620.
[13] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[14] LI Dongmei, TAN Liming, ZHAO Qing, XIE Hanxi, YU Peng, XIA Lei. Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy[J]. 材料研究学报, 2020, 34(8): 605-610.
[15] SHI Yuanji, CHEN Xianbing, WU Xiujuan, WANG Hongjun, GUO Xunzhong, LI Junwan. Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation[J]. 材料研究学报, 2020, 34(8): 628-634.
No Suggested Reading articles found!