Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (11): 857-865    DOI: 10.11901/1005.3093.2021.010
ARTICLES Current Issue | Archive | Adv Search |
Effect of Final Temperature of Cooling on Microstructure and Properties of Aseismic High-strength Steel Rebar
ZENG Zeyun1, LI Changrong1,2(), LI Zhiying1,2, HUANG Sheng1, LI Shiwang1, YOU Jingtian1
1.School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2.Key Laboratory of Metallurgical Engineering and Process Energy Conservation of Guizhou Province, Guiyang 550025, China
Cite this article: 

ZENG Zeyun, LI Changrong, LI Zhiying, HUANG Sheng, LI Shiwang, YOU Jingtian. Effect of Final Temperature of Cooling on Microstructure and Properties of Aseismic High-strength Steel Rebar. Chinese Journal of Materials Research, 2021, 35(11): 857-865.

Download:  HTML  PDF(2425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal simulation test of an experimental aseismic high strength steel was conducted by Gleeble-3800 thermal simulator, then its microstructure, second phase, mechanical properties and fracture morphology were characterized by metallographic microscopy (OM), field emission scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM) and universal tensile testing machine. Meanwhile, the effect of final temperature of cooling on the microstructure and properties of the steel was carefully examined, and the grain refinement mechanism induced by microalloying elements was revealed. The results show that: the microstructure of the steel consists mainly of phases ferrite and pearlite, and the ferrite grain was refined with the decrease of the final temperature of cooling. The average diameter of precipitated carbides (Nb, Ti, V) C and (V, Nb, Ti) C distributed in the ferrite matrix of the steel is about 2 nm and 5 nm respectively for the final temperature of cooling 650℃. The tensile strength and yield strength of the steel increase with the decrease of the final temperature of cooling. When the final temperature of cooling is 650℃, the corresponding tensile strength and yield strength are 638.75 MPa and 467 MPa, respectively, and the strength/yield ratio is 1.37. The tensile fractured surface of steels, which have been experienced thermal simulation tests with different final temperatures of cooling, exhibits mainly equiaxed dimples of different sizes and depths.

Key words:  metallic materials      high-strength anti-seismic rebar      final cooling temperature      microstructure      mechanical properties     
Received:  18 January 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(52074095)
About author:  LI Changrong, Tel: (0851)83627683, E-mail: crli@gzu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.010     OR     https://www.cjmr.org/EN/Y2021/V35/I11/857

CSiMnPSNbVTiCeq
0.180.351.320.0190.0120.0200.0650.0080.51
Table 1  Chemical composition of the experimental ingot (mass fraction, %)
Fig.1  Thermal simulation process of the experimental steel
Fig.2  Metallographic microstructure of experimental steel after 5 passes of hot simulation rolling at different final cooling temperatures (a) 650℃、(b) 700℃、(c) 750℃
Final cooling temperatureFerrite/%Pearlite/%Ferrite average grain size/mmGrain size grade
650℃55450.00778511
700℃58420.0113910
750℃60400.015959
Table 2  Microstructure proportion and grain statistics of the experimental steel
Fig.3  (Nb, Ti, V)C precipitates (a) in experimental steels with a final cooling temperature of 650℃ and EDS images (b), high resolution lattice fringe phase (c) and electron diffraction region (d)
Fig.4  (V, Nb, Ti)C precipitates (a) in experimental steels with a final cooling temperature of 650℃ and EDS images (b), high resolution lattice fringe phase (c) and electron diffraction region (d)
Fig.5  Proportion distribution of precipitates in experimental steel
Fig.6  Stress-strain curve of the experimental steel tensile under the condition of five passes of thermal simulation
Final cooling temperatureReL/MPaRm/MPaRm/ReLA/%
650℃638.754671.3713
700℃605.584471.3515
750℃567.124121.3712
Table 3  Tensile data of the experimental steel
Fig.7  Tensile fracture morphology of the experimental steel under different final cooling temperatures in five pass thermal simulation rolling (a, b, c) tensile macroscopic fracture morphologies of the experimental steel at the final cooling temperature of 650℃, 700℃, 750℃ respectively; (d, e, f) tensile microscopic fracture morphology of the experimental steel at the final cooling temperature of 650℃, 700℃, 750℃
Phases in steelRelative density/g·cm-3
Fe7.874
NbC8.47
TiC4.93
VC5.77
Table 4  Relative density of Fe and precipitated phase MC in steel
Precipitation650℃700℃750℃
(Nb, Ti, V)C0.22480.21430.1130
(V, Nb, Ti)C0.21320.20210.1045
Table 5  Volume fraction (%) of (Nb, V, Ti)C precipitation in experimental steel at different final cooling temperatures
1 Yang Y Q, Wang Q J, Du Z Z, et al. Research status of high strength anti vibration reinforcement [J]. Materials Reports, 2015, 29 (10): 101
杨雨晴, 王庆娟, 杜忠泽等. 高强度抗振钢筋的研究现状 [J]. 材料导报, 2015, 29 (10): 101
2 Yang C F. The latest technical progress of high strength building reinforcement [J]. Iron and Steel, 2010, 45 (11): 1
杨才福. 高强度建筑钢筋的最新技术进展 [J]. 钢铁, 2010, 45 (11): 1
3 Yu M S, Sheng G M, Zhan S Y. Research status of seismic reinforcement [J]. Materials Reports, 2010, 24 (15): 454
于孟山, 盛光敏, 詹苏宇. 抗震钢筋研究现状 [J]. 材料导报, 2010, 24 (15): 454
4 Yang G W, Sun X J, Yong Q L, et al. Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel [J]. J. Iron Steel Res. Int., 2014, 21: 757
5 Mao X P, Chen Q L, Sun X J. Metallurgical interpretation on grain refinement and synergistic effect of Mn and Ti in Ti-microalloyed strip produced by TSCR [J]. J. Iron Steel Res. Int., 2014, 21: 30
6 Yang G W, Sun X J, Li Z D, et al. Effect of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel [J]. Mater. Des., 2013, 50: 102
7 He X L, Yang G W, Mao X P, et al. Effect of Nb on the continuous cooling transformation rule and microstructure, mechanical properties of Ti-Mo bearing microalloyed steel [J]. Acta Metall. Sin., 2017, 53: 648
8 Liu S X, Chen Y, Liu G Q, et al. Effect of intermediate cooling on precipitation behavior and austenite decomposition of V-Ti-N steel for nonquenched and tempered oil-well tubes [J]. Mater. Sci. Eng. A, 2008, 485: 492
9 Zhang X, Cai Q, Zhou G, et al. Microstructure and mechanical properties of V-Ti-N microalloyed steel used for fracture splitting connecting rod [J]. J. Mater. Sci., 2011, 46: 1789
10 Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44: 1945
11 Patra P K, Sam S, Singhai M, et al. Effect of coiling temperature on the microstructure and mechanical properties of hot-rolled Ti-Nb microalloyed ultra high strength steel [J]. Trans. Indian Inst. Met., 2017, 70: 1773
12 Hu J, Du L X, Wang J J, et al. Microstructures and mechanical properties of a new as-hot-rolled high-strength DP steel subjected to different cooling schedules [J]. Metall. Mater. Trans. A, 2013, 44: 4937
13 Liu Q D, Zhao S J. Comparative study on austenite decomposition and Cu precipitation during continuous cooling transformation [J]. Metall. Mater. Trans. A, 2013, 44: 163
14 Wang X, Du L, Xie H, et al. Effect of deformation on continuous cooling phase transformation behaviors of 780 MPa Nb-Ti ultra-high strength steel [J]. Steel Res. Int., 2011, 82
15 Yuan X Q, Liu Z Y, Jiao S H, et al. The onset temperatures of γ to α-phase transformation in hot deformed and non-deformed Nb micro-alloyed steels [J]. ISIJ Int., 2006, 46: 579
16 Mecozzi M G, Sietsma J, Zwaag S V D. Analysis of γα transformation in a Nb micro-alloyed C-Mn steel by phase field modeling [J]. Acta Mater., 2006, 54: 1431
17 Courtois E, Epicier T, Scott C. Characterisation of niobium carbide and carbonitride evolution within ferrite: contribution of transmission electron microscopy and advanced associated techniques [J]. Mater. Sci. Forum., 2005, 500: 669
18 Aviation Equipment Failure Analysis Center of the Ministry of Aerospace Industry. Fracture Analysis and Map of Metal Materials [M]. Beijing: Science Press, 1991
航空航天工业部航空装备失效分析中心. 金属材料断口分析及图谱 [M]. 北京: 科学出版社, 1991
19 Zhang Z H, Liu Y, Zhou Y N, et al. Effect of precipitation of (Ti, V) N and V (C, N) secondary phases on mechanical properties of V and N microalloyed 1Cr steels [J]. Mater. Sci. Eng. A, 2018, 738: 203
20 Pickering B. Physical Metallurgy snd the Design of Steels [M]. Applied Science Publishers Ltd, London, 1978
21 Gladman T. The Physical Metallurgy of Microalloyed Steels [M]. The Institute of Materials, London, 1997
22 Misra R, Nathani H, Hartmann J, et al. Microstructure evolution in a new 770MPa hot rolled Nb-Ti microalloyed steel [J]. Mater. Sci. Eng. A, 2005, 394: 339
23 Misra R, Weatherly C, Hartmann E, et al. Ultrahigh strength hot rolled microalloyed steel: microstructural aspects of development [J]. Mater. Sci. Tech., 2001, 17: 1119
24 Uenishi A, Teodosiu C. Solid solution softening at high strain rates in Si and/or Mn added interstitial free steels [J]. Acta Mater., 2003, 51: 4437
25 Iza-Mendia A, Gutierrez I. Generalization of the existing relations between microstructure and yield stress from ferrite-pearlite to high strength steels [J]. Mater. Sci. Eng. A, 2013, 561: 40
26 Gutierrez I, Altuna M A. Work-hardening of ferrite and microstructure-based modelling of its mechanical behavior under tension [J]. Acta Mater., 2008, 56: 4682
27 Altuna M A, Iza-Mendia A, Gutierrez I. Precipitation of Nb in ferrite after austenite conditioning, Part II: strengthening contribution in high-strength low-allow (HSLA) steels [J]. Metall. Mater. Trans. A, 2012, 43: 4571
28 Eghbali B, Abdollah A. Influence of deformation temperature on the ferrite grain refinement in a low carbon Nb-Ti microlloyed steel [J]. J. Mater. Process. Tech., 2006, 180: 44
29 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc. B, 1951, 64: 747
30 Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst, 1953, 174: 25
31 Isasti N, Jorge-Badiola D, Taheri M L, et al. Microstructural characterization and precipitation characterization in Nb-Mo microalloyed steels: estimation of the contributions to the strength [J]. Met. Mater. Int., 2014, 20: 807
32 Nikolaou J, George D. Impact toughness of reinforcing steels produced by (i) the tempcore process and (ii) microlloying with vanadium [J]. Int. J. Impact. Eng., 2005, 31: 1065
33 Pavlina E J, Speer J G, Tyne C J V. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scr. Mater., 2012, 66: 243
34 Gladman T. Precipitation hardening in metals [J]. metal, Sci. J., 1999, 15: 30
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!