Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (8): 597-602    DOI: 10.11901/1005.3093.2018.637
ARTICLES Current Issue | Archive | Adv Search |
Thermal Stability of Nanoscale Bainite/Martensite Steel
Fanfan FENG,Huibin WU(),Xinpan YU
Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Fanfan FENG,Huibin WU,Xinpan YU. Thermal Stability of Nanoscale Bainite/Martensite Steel. Chinese Journal of Materials Research, 2019, 33(8): 597-602.

Download:  HTML  PDF(16795KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the prior martensite on the thermal stability of the nano-bainitic steel was investigated. The nano-bainitic steel composed of prior martensite, nano-sized bainitic ferrite and retained austenite was obtained by quenching and followed by bainite transformation at low temperature. The microstructure and hardness variation were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and hardness tester etc. for the nano-bainite steels after tempering at different temperatures. Results show that after tempering at 473~773 K the hardness of the nano-bainite steel containing prior martensite is higher than that of the untampered ones. However, after tempering at temperatures above 823 K, its hardness decreased rapidly and which down to 266.2HV at 923 K. The carbon was discharged from prior martensite to the retained austenite when the steel was tempered at 473~573 K. The carbon content of the later increased to a peak value, i.e. 1.52%, which improved the thermal stability of retained austenite, and further delayed the decomposition of the later, thus improved the thermal stability of the nano-bainitic steel at high temperature. The retained austenite decomposed into carbides, and the bainitic ferrite coarsened and recovered, formed new ferrite grain when the tempering temperature exceeded 723 K.

Key words:  metallic materials      nano-bainitic steel      thermal stability      prior martensite      hardness     
Received:  01 November 2018     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China(No. 51774033)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.637     OR     https://www.cjmr.org/EN/Y2019/V33/I8/597

Fig.1  Schematic diagram of heat treatments
Fig.2  Hardness changing with tempering temperature. H0 is the average hardness of the untempered sample
Fig.3  Microstructure of the tested steel before tempering (a) SEM image, (b) TEM image
Fig.4  Microstructure of the tested steel in tempering temperature (a) 523 K; (b) 623 K; (c) 723 K; (d) 823 K
Fig.5  TEM images of the tested steel in tempering temperature (a) 523 K; (b) 723 K; (c) 773 K; (d) 823 K
Fig.6  Thickness of the bainitic ferrite plate changing with the tempering temperature
Fig.7  Carbon content within retained austenite changing with tempering temperature
[1] Hu F, Zhou L X, Zhang Z C, et al. Current status and future trend of micro-and nano-structured ultra-high strength steels [J]. Materials China, 2015, 34(7-8): 595
[1] 胡 峰, 周立新, 张志成等. 微纳结构超高强度钢的现状与发展 [J]. 中国材料进展, 2015, 34(7-8): 595
[2] Zhang F C, Lv B, Zheng C L, et al. Microstructure of the worn surfaces of a bainitic steel railway crossing [J]. Wear, 2010, 268(11): 1243
[3] Sandvik B P J, Nevalainen H P. Structu re-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness [J]. Metal Science Journal, 1981, 8(1): 213
[4] Bhadeshia H K D H. Nanostructured bainite [J]. Proceedings Mathematical Physical & Engineering Sciences, 2010, 466(2113): 3
[5] Hu F, Zhang G H, Wan X L, et al. Regulation of retained austenite in the micro/nano-structured bainitic steels and its influence on the stability [J]. Transactions of Materials and Heat Treatment, 2017, 38(4): 15
[5] 胡 锋, 张国宏, 万响亮等. 微纳结构贝氏体钢中残留奥氏体的调控及其对稳定性的影响 [J]. 材料热处理学报, 2017, 38(4): 15)
[6] Soliman M, Palkowski H. Development of the low temperature bainite [J]. Archives of Civil & Mechanical Engineering, 2016, 16(3): 403
[7] Hu H, Zurob H S, Xu G, et al. New insights to the effects of ausforming on the bainitic transformation [J]. Materials Science & Engineering A, 2015, 626: 34
[8] He J G, Zhao A M, Huang Y, et al. Effect of warm rolling process on phase transformation, microstructure and mechanical properties of nano-bainite steel [J]. Chinese Journal of Materials Research, 2015, 29(3): 207
[8] 何建国, 赵爱民, 黄 耀等. 温轧工艺对纳米贝氏体相变速率、组织和力学性能的影响 [J]. 材料研究学报, 2015, 29(3): 207
[9] Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Materialia, 2015, 85: 243
[10] Toji Y, Matsuda H, Raabe D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite [J]. Acta Materialia, 2016, 116: 250
[11] Kang J, Zhang F C, Yang X W, et al. Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel [J]. Materials Science & Engineering A, 2017, 686: 150
[12] Dyson D J. Effect of alloying additions on the lattice parameter of austenite [J]. J. Iron Steel Inst., 1970, 208: 469
[13] Chang L C, Bhadeshia H K D H. Austenite films in bainitic microstructures [J]. Metal Science Journal, 1995, 11(9): 874
[14] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite [J]. Metal Science Journal, 2002, 18(3): 279
[15] Timokhina I B, Beladi H, Xiong X Y, et al. Nanoscale microstructural characterization of a nanobainitic steel [J]. Acta Materialia, 2011, 59(14): 5511
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!