Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 170-176    DOI: 10.11901/1005.3093.2018.282
Current Issue | Archive | Adv Search |
Electrochemical Properties of LiCoO2/LiNi0.8Co0.15Al0.05O2 Blended Cathode Materials with Varied Grain-gradations
Jiangpei XUE1,Chunhai JIANG1(),Zhimin ZOU1,Bingxuan PAN2
1. Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
2. Xiamen 3-cycles Battery Co. Ltd, Xiamen 361023, China
Cite this article: 

Jiangpei XUE,Chunhai JIANG,Zhimin ZOU,Bingxuan PAN. Electrochemical Properties of LiCoO2/LiNi0.8Co0.15Al0.05O2 Blended Cathode Materials with Varied Grain-gradations. Chinese Journal of Materials Research, 2019, 33(3): 170-176.

Download:  HTML  PDF(8440KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Blended cathode materials LiCoO2/LiNi0.8Co0.15Al0.05O2(LCO/NCA) with different mass ratios of LiCoO2 to LiNi0.8Co0.15Al0.05O2 were prepared by ball milling method. The phase structure and morphology of the blended cathode materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the prepared cathodes were examined in half cells. It follows that after the ball milling, the crystal structure of the blended cathode materials did not change, however, the initial secondary NCA microspheres were broken into nano-sized fragments, which were then uniformly filled into the gaps between LCO microspheres, resulting in enhancement of the contact between the two cathode materials, and therewith, the density of the film prepared on cathode. For LCO:NCA = 6:4, the blended cathode material displayed the best grain-gradation effect and good electrochemical performances: namely the initial columbic efficiency of 92.4%, the capacity retention of 78% at 10 C (1 C=140 mA·g-1) referencing to that at 0.2 C, and capacity retention of 89.8% after 100 cycles at 1 C. A synergistic effect on the rate performance between the two cathode materials was obviously demonstrated.

Key words:  inorganic non-metallic materials      blended cathode material      electrochemical perfor-mance      Li-ion batteries      rate capability      cycle stability     
Received:  20 April 2018     
ZTFLH:  TB321  
Fund: Natural Science Foundation of Fujian Province(2016H0038);Natural Science Foundation of Fujian Province(2016J01746);Guidance Project of Xiamen Science and Technology Institute(3502Z20179022);Innovation Project for Graduate Student of Xiamen University of Technology(40316099)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.282     OR     https://www.cjmr.org/EN/Y2019/V33/I3/170

Fig.1  XRD patterns of NCA, LCO and LCO/NCA blended cathode materials
Fig.2  SEM images of the NCA (a) and LCO (b) cathode materials and the corresponding NCA (c) and LCO (d) electrodes
Fig.3  SEM images of the LCO/NCA blend cathode electrodes prepared with LCO/NCA mass ratios of (a) 70:30, (b) 60:40, (c) 50:50 and (d) 40:60
Fig.4  CV curves of NCA, LCO and LCO/NCA blend cathode at a scan rate 0.1 mV·s-1
Fig.5  Initial charge and discharge curves of NCA, LCO and LCO/NCA blend cathodes at 0.2 C
Fig.6  Rate capability of NCA, LCO and LCO/NCA blend cathode materials
Fig.7  Cycle performances of NCA, LCO and LCO/NCA blend cathode materials at 1 C
Fig.8  Electrochemical impedance spectra of NCA, LCO and LCO/NCA blend cathode materials
[1] HuM, PangX L, ZhouZ. Recent progress in high-voltage lithium ion batteries [J]. J. Power. Sources, 2013, 237: 229
[2] BhattM D, O'DwyerC. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes [J]. Phys. Chem. Chem. Phys., 2015, 17(7): 4799
[3] NittaN, WuF, LeeJ T, et al. Li-ion battery materials: present and future [J]. Mater. Today, 2015, 18(5): 252
[4] RuanZ W, GuH T, ShiH H, et al. Research progress of LiNi(1-x-y)CoxAlyO2 as cathode materials for Lithium ion battery [J]. J. Funct. Mater., 2015, 01: 1007
[4] (阮泽文, 顾海涛, 史海浩等. 动力锂离子电池三元正极材料LiNi(1-x-y)CoxAlyO2研究进展 [J]. 功能材料, 2015, 01: 1007)
[5] HouP Y, ZhangH Z, DengX L, et al. Stabilizing the electrode/electrolyte interface of LiNi0.8 Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries [J]. ACS Appl. Mater. Inter., 2017, 9(35): 29643
[6] QiuZ P, ZhangY J, DongP, et al. Degradation analysis of LiNi0.8Co0.15Al0.05O2 positive-electrode active material and its modification methods [J]. Mater. Rev., 2017, 31(1): 18
[6] (邱振平, 张英杰, 董 鹏等. LiNi0.8Co0.15 Al0.05O2正极活性材料的衰减机理及改性措施 [J]. 材料导报, 2017, 31(1): 18)
[7] YangW Z, WangH, ZhengC M. Detailed study on LiMn2O4/Li-Ni0.8Co0.15Al0.05O2 blend cathode material for lithium-ion battery [J]. GuangZhou. Chem. Ind. Technol., 2016, 44(15): 51
[7] (杨文柱, 王 珲, 郑春满. LiMn2O4/LiNi0.8Co0.15Al0.05O2混合正极材料性能研究 [J]. 广州化工, 2016, 44(15): 51)
[8] ChikkannanavarS B, BernardiD M, LiuL. A review of blended cathode materials for use in Li-ion batteries [J]. J. Power. Sources, 2014, 248: 91
[9] MarthaS K, HaikO, ZinigradE. On the thermal stability of olivine cathode materials for lithium-ion batteries [J]. J. Electrochem. Soc., 2011, 158(10): A1115
[10] DuY C, HuangX P, ZhangK Y, et al. Thermal stability of LiFePO4/C-LiMn2O4 blended cathode materials [J]. Sci. China Technol. Sci., 2017, 60(1): 58
[11] TanX X, TangY G, WangW D, et al. Synthesis and electrochemical characteristics of layered LiNi0.7Co0.15Mn0.15O2 cathode materials for Li-ion batteries [J]. Chin. J. Mater. Res., 2010, 24(2): 159
[11] (谭欣欣, 唐有根, 王伟东等. 锂离子电池正极材料球形LiNi0.7Co0.15Mn0.15O2的制备和性能 [J]. 材料研究学报, 2010, 24(2): 159)
[12] XuC Q, TianY W, LiuL Y, et al. Influence of Al3+ doping on structure and electrochemical properties of Li1.02Mn2O4 [J]. Chin. J. Mater. Res., 2006, 20(5): 544
[12] (徐茶清, 田彦文, 刘丽英等. Al3+掺杂对Li1.02Mn2O4结构和电化学性能的影响 [J]. 材料研究学报, 2006, 20(5): 544)
[13] LinC H, ShenC H, PrinceA A M, et al. Electrochemical studies on mixtures of LiNi0.8Co0.17Al0.03O2 and LiCoO2 cathode materials for lithium ion batteries [J]. Solid State Commun., 2005, 133(10): 687
[14] WangL Z, YanJ, ZhangA Q, et al. Research on the overcharge characteristic of LiCoO2/LiNi0.8Co0.15Al0.05O2 mixture [J]. Chinese. Battery. Ind., 2009, 14(3): 147
[14] (王力臻, 闫 继, 张爱勤等. LiCoO2/LiNi0.8Co0.15Al0.05O2混合正极材料过充电行为研究 [J]. 电池工业, 2009, 14(3): 147)
[15] ZhuL, JiaD, YuC, et al. Electrochemical thermal stability of the LiFePO4/LiNi0.8Co0.15Al0.05O2 blend cathode material for lithium ion batteries [J]. Energy Storage Sci. Techno., 2016, 5(4): 478
[15] (朱 蕾, 贾 荻, 俞 超等. 锂离子电池LiFePO4/LiNi0.8Co0.15-Al0.05O2混合正极材料的电化学热稳定性能 [J]. 储能科学与技术, 2016, 5(4): 478)
[16] ZhangW M, YangY H, SunS X, et al. Progresses in preparation study of positive electrode material—lithium cobaltate used for lithium ion battery [J]. Chinese. J. Inorg. Chem., 2000, 16(6): 873
[16] (张卫民, 杨永会, 孙思修等. 二次锂离子电池正极活性材料—LiCoO2制备研究进展 [J]. 无机化学学报, 2000, 16(6): 873)
[17] HeL B. Cathode composite materials and their applications in lithium-ion batteries [D]. Zhejiang: Zhejiang University, 2017
[17] (何林兵. 复合正极材料及其在锂离子电池中的应用 [D]. 浙江: 浙江大学, 2017)
[18] LiC D, YaoZ L, LiJ, et al. Preparation and Electrochemical Performance of LaF3-coated [Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries [J]. Chin. J. Mater. Res., 2017, 31(5): 394
[18] (李成冬, 姚志垒, 李 举等. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13-Co0.13]O2的制备及其电化学性能 [J]. 材料研究学报, 2017, 31(5): 394)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!