Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 161-169    DOI: 10.11901/1005.3093.2018.509
Current Issue | Archive | Adv Search |
Effect of Temperature and Powder Particle Size on Mechanical Properties and Microstructure of PM Ti2AlNb Alloy Prepared via Hot Isostatic Pressing
Qiaomu LIU1,Jie WU2,Yulong CHEN1,Qianming CHEN1,Huiping PEI1,Lei XU2()
1. AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Qiaomu LIU,Jie WU,Yulong CHEN,Qianming CHEN,Huiping PEI,Lei XU. Effect of Temperature and Powder Particle Size on Mechanical Properties and Microstructure of PM Ti2AlNb Alloy Prepared via Hot Isostatic Pressing. Chinese Journal of Materials Research, 2019, 33(3): 161-169.

Download:  HTML  PDF(5617KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pre-alloyed powder of Ti-22Al-24Nb-0.5Mo (atomic fraction, %) was prepared via a two step process, i.e. electrode no crucible induction melting and then gas atomization process. Powder metallurgy (PM) Ti2AlNb alloys was prepared through a typical hot isostatic pressing (HIPing) route. Two pre-alloyed powders with average particle sizes of 70 and 200 μm respectively were prepared and adopted to prepare PM alloys tested for comparison. The results showed that the powder particle size had no significant effect on the tensile strength at room temperature, but a significant effect on the tensile strength and rupture life time at elevated temperature. It showed that the rupture lifetime of PM Ti2AlNb alloys made of the coarser powders was about 40% less than that of the finer powders.

Key words:  metallic materials      hot isostatic pressing      powder particle size      Ti2AlNb      mechanical properties     
Received:  15 August 2018     
ZTFLH:  TG146.2  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.509     OR     https://www.cjmr.org/EN/Y2019/V33/I3/161

Batch numberAlNbMoONHArTi
I10.438.60.900.0650.0080.0025< 0.0005Bal.
II10.540.60.900.0660.0050.0024< 0.0005Bal.
III10.240.70.900.0650.0070.0015< 0.0005Bal.
IV10.540.90.900.0860.0120.0045< 0.0005Bal.
V10.540.60.910.0890.0100.0050< 0.0005Bal.
Table 1  Chemical composition of Ti2AlNb pre-alloyed powders (mass fraction, %)
  
Fig.2  Typical morphology of Ti2AlNb pre-alloyed powders
  
Fig.4  Microstructure of PM Ti2AlNb alloy after HIPing at (a) 920℃/130 MPa/3 h, (b) 980℃/140 MPa/3 h, (c) 1010℃/140 MPa/3 h, (d) 1030oC/140 MPa/3 h, (e) 1080℃/140 MPa/3 h, (f) 1165℃/140 MPa/3 h. PPB refers to previous particle boundary
Fig.5  Microstructure of PM Ti2AlNb (hipped at 1030℃/140 MPa/3 h) alloy by EBSD analysis
  
  
Temperature /℃UTS/MPaEI./%L/h
D50=70 μm2010298.0103
65073114.0
D50=200 μm209916.065
65070616.0
D50=100 μm with typical process2010408.5110
65080015.0
Table 2  Tensile and rupture properties at room and elevated temperature of PM Ti2AlNb alloys with different original particle size
Fig.8  Tomographic reconstructed in Ti2AlNb hot isostatic pressing samples at 1030℃/140 MPa/3 h: (a) D50=70 μm, (b) D50=200 μm, (c) void size distribution histogram of Ti2AlNb samples for both D50=70 μm and D50=200 μm obtained from tomographic analysis
Fig.9  Ti2AlNb complex parts prepared from powder metallurgy route
[1] BanerjeeD, GogiaA K, NandiT K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Materialia, 1988, 36(4): 871
[2] GermannL, BanerjeeD, GuédouJ Y, et al. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide [J]. Intermetallics, 2005, 13 (9): 920
[3] BanerjeeD. The intermetallic Ti2AlNb [J]. Progress in Materials Science, 1997, 42 (1-4): 135
[4] ShenJ, FengA H . Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys [J]. Acta Metallurgica Sinica, 2013, 49 (11):1286
[4] (沈 军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展 [J]. 金属学报, 2013, 49(11): 1286)
[5] WangY. The study on alloying, hot deformation behaviors and mechanical properties of Ti2AlNb based alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
[5] (王 永. Ti2AlNb基合金的合金化、热加工及力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2012)
[6] LuZ G, WuJ, XuL, et al. Comparative study on hot workability of powder metallurgy Ti-22Al-24Nb-0.5Mo alloy [J]. Chinese Journal of Materials Research, 2015, 29 (6):445
[6] (卢正冠, 吴 杰, 徐磊等. 粉末 Ti-22Al-24Nb-0.5Mo 合金热变形能力的对比研究 [J]. 材料研究学报, 2015, 29(6): 445)
[7] WuJ, XuL, LuB, et al. Preparation of Ti2AlNb alloy by powder metallurgy and its rupture lifetime [J]. Chinese Journal of Materials Research, 2014, 28(5): 387
[7] 吴 杰, 徐 磊, 卢 斌等. 粉末冶金Ti2AlNb合金的制备及持久寿命 [J]. 材料研究学报, 2014, 28(5): 387)
[8] WuJ, XuL, LuZ G, et al. Microstructure design and heat response of powder metallurgy Ti2AlNb alloys [J]. Journal of Materials Science & Technology, 2015, 31(12): 1251
[9] SamarovV, SeliverstovD, FroesFH. In Titanium powder metallurgy [M]. Oxford: Butterworth-Heinemann, 2015
[10] YangR. Advances and challenges of TiAl base alloys [J]. Acta Metallurgica Sinica, 2015, 51 (2): 129
[10] (杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51(2): 129)
[11] XuL, WuJ, CuiY Y, et al. Effect of powder pre-treatment on the mechanical properties of powder metallurgy Ti-47Al-2Cr-2Nb-0.15B [A]. Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology [C]. Hoboken, Wiley, 2014
[12] WuJ, XuL, LuZ G, et al. Preparation and electron beam welding of HIP powder metallurgy Ti-22Al-24Nb-0.5Mo alloys [J]. Rare Metal Materials and Engineering, 2017, 46(S1): 241
[12] (吴 杰, 徐 磊, 卢正冠等. 热等静压粉末Ti2AlNb合金的制备及电子束焊 [J]. 稀有金属材料与工程, 2017, 46(S1): 241)
[13] WegmannG, GerlingR, SchimanskyF P. Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders [J]. Acta Materialia, 2003, 51(3): 741
[14] EylonD, SchwenkerS W, FroesF H. Thermally induced porosity in Ti-6Al-4V prealloyed powder compacts [J]. Metallurgical Transactions A, 1985, 16(8): 1526
[15] XuL, GuoR P, BaiC G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder [J]. Journal of Materials Science & Technology, 2014, 30(12): 1289
[16] ChengW X. Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders during HIPing [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013
[16] (程文祥. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[17] WuJ, GuoR P, XuL, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys [J]. Journal of Materials Science & Technology, 2017, 33(2): 172
[18] LuZ G, WuJ, GuoR P, et al. Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 621
[19] BoehlertC J, MajumdarB S, SeetharamanV, et al. Part I. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys [J]. Metallurgical & Materials Transactions A, 1999, 30(9): 2305
[20] BoehlertC J, MiracleD B. Part II. The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys [J]. Metallurgical & Materials Transactions A, 1999, 30(9): 2349
[21] BoehlertC J. Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys [J]. Metallurgical & Materials Transactions A, 2001, 32(8): 1977
[22] QuastJ P, BoehlertC J. Comparison of the microstructure, tensile, and creep behavior for Ti-24Al-17Nb-0.66Mo (atomic percent) and Ti-24Al-17Nb-2.3Mo (atomic percent) alloys [J]. Metallurgical & Materials Transactions A, 2007, 38(3): 529
[23] BoehlertC J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy [J]. Journal of Phase Equilibria, 1999, 20(2): 101
[24] ChenW, LiJ W, XuL, et al. Development of Ti2AlNb alloys: opportunities and challenges [J]. Advanced Materials & Processes, 2014, 172(5): 23
[25] EmuraS, AraokaA, HagiwaraM. B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy [J]. Scripta Materialia, 2003, 48(5): 629
[26] XuL, GuoR P, WuJ, et al. Progress in hot isostatic pressing technology of titanium alloy powder [J]. Acta Metallurgica Sinica, 2018, 54(11): 1537
[27] GuoR P, XuL, WuJ, et al. Microstructural evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response [J]. Materials Science & Engineering A, 2015, 639: 327
[28] GuoR P, XuL, ZongB Y, et al. Preparation and ring rolling processing of large size Ti-6Al-4V powder compact [J]. Materials & Design, 2016, 99: 341
[29] GuoR P, XuL, ZongYP, et al. Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts [J]. Acta Metallurgica Sinica(English Letters), 2017, 30(8): 735
[30] ChengW X, XuL, LeiJ F, et al. Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder [J].The Chinese Journal of Nonferrous Metals, 2013, 23 (2): 362
[30] (程文祥, 徐 磊, 雷家峰等. 粉末粒度偏析对 Ti-5Al-2.5Sn ELI 粉末合金拉伸性能的影响 [J].中国有色金属学报, 2013, 23 (2): 362)
[31] WangS G, WangS C, ZhengL. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metallurgica Sinica, 2013, 49(8): 897
[31] (王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49(8): 897)
[32] JiangH, ZhangK, Garcia-PastorF A, et al. Microstructure and properties of hot isostatically pressed powder and extruded Ti25-V15Cr2Al0.2C [J]. Materials Science and Technology, 2011, 27(8): 1241
[33] LiW B, AshbyM F, EasterlingK E. On densification and shape change during hot isostatic pressing [J]. Acta Metallurgica, 1987, 35(12): 2831
[34] LiW B, EasterlingK E. Cause and effect of non-uniform densification during hot isostatic pressing [J]. Powder Metallurgy, 1992, 35(1): 47
[35] GuoR P, ZhangJ, XuL, et al. Mechanical properties of Ti-5Al-2.5Sn ELI powder compacts [J]. Chinese Journal of Materials Research, 2018, 32(5): 333
[35] (郭瑞鹏, 张 静, 徐 磊等. Ti-5Al-2.5Sn ELI粉末合金的力学性能 [J]. 材料研究学报, 2018, 32(5): 333)
[36] XuL, GuoR P, LiuY Y. Cost analysis of titanium alloy parts through neat-net-shape hot isostatic pressing [J]. Titanium Industry Progress, 2014, 31(6): 1
[36] (徐 磊, 郭瑞鹏, 刘羽寅. 钛合金粉末热等静压近净成形成本分析 [J]. 钛工业进展, 2014, 31(6): 1)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!