Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 177-184    DOI: 10.11901/1005.3093.2018.252
Current Issue | Archive | Adv Search |
Effect of Electrochemical Etching Parameters on Surface Morphology of Thick-walled Macroporous Silicon Array
Huan AN1,Jianchun WU1,Zhong ZHANG1,Huan WANG1,Hua SUN2,Changyong ZHAN1(),Yu ZOU1()
1. Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
2. College of Physics, Soochow University, Suzhou 215006, China
Cite this article: 

Huan AN,Jianchun WU,Zhong ZHANG,Huan WANG,Hua SUN,Changyong ZHAN,Yu ZOU. Effect of Electrochemical Etching Parameters on Surface Morphology of Thick-walled Macroporous Silicon Array. Chinese Journal of Materials Research, 2019, 33(3): 177-184.

Download:  HTML  PDF(15327KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thick-walled macroporous silicon arrays (MSA) were fabricated on n-type monocrystalline silicon wafer with resistivity 4~5 kΩ·cm by photo-electrochemical etching in HF solutions. The surface and cross-sectional morphologies of the MSA were assessed by scanning electron microscope. The electric field distribution around the prefabricated pits were simulated by finite element method. By comparing with the simulation, the evolution of surface morphology of the prepared MSA was studied with the changing process parameters such as electrolyte, illumination, and applied voltage. During the etching process, deviations are found for the macropores despite of that there existed a restriction resulted from the prefabricated pits. This is due to the comprehensive effect of electric field distribution and etching parameters. The simulation results show that the electric field distribution on the prefabricated pits is featured by shapes along silicon orientation [100] and [110] at different values. Due to the existence of the above favorable influence factor, the etching face may tend to change from (110) to (100), in case that the illumination increases, while the surface free energy of the etching electrolyte decreases, which may be resulted from the stimulation of additives ethanol and hexadecyl trimethyl ammonium chloride (CTAC). Therefore, the increase of the applied voltage can restrain the etching deviation, which is conducive to rapidly transform the prefabricated pits into pores, hence, to promote the formation of thick-walled macroporous silicon array.

Key words:  inorganic non-metallic materials      macroporous silicon array      photo-electrochemical etching      surface morphology     
Received:  04 April 2018     
ZTFLH:  TN303  
Fund: National Natural Science Foundation of China(11405111)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.252     OR     https://www.cjmr.org/EN/Y2019/V33/I3/177

Fig.1  SEM image of the prefabricated pits (a) and 3D model of the prefabricated pit for COMSOL simulation (b)
Fig.2  Side view (a), cross-sectional (b), and top view (c-f) of the isosurfaces of the applied electric field simulated by COMSOL: (c) 0-0.2 V/μm; (d) 0.2-0.4 V/μm; (e) 0.4-0.8 V/μm; (f) 0.8-4 V/μm. The directions shown in the pictures in the paper are the crystal orientation of silicon, the crystal orientation is not discriminated during the simulation
Fig.3  Surface and cross-sectional SEM images of the macroporous silicon array etched at different light intensities controlled by the input voltages of the lamp controlled by a rheostat (a), (c) 140 V; (b), (d) 235 V
Fig.4  Surface and cross-sectional SEM images of the macroporous silicon array etched in solutions with different CTAC contents (a), (c) 0.07 g; (b), (d) 0.1 g
Fig.5  Surface and cross-sectional SEM images of the macroporous silicon array etched at different applied voltages (a), (b) 1.2 V; (c), (d) 1.5 V; (e), (f) 2 V
Fig.6  Surface and cross-sectional SEM images of the macroporous silicon array etched at different applied voltages (a), (c) 1.85 V; (b), (d) 2.4 V
Electrochemical etching parameters

Lamp voltages in HF/H2O/Ethanol

/V

CTAC contents

/g

Applied voltages in HF/H2O

/V

Applied voltages in

HF/H2O/Ethanol

/V

01402350.070.11.852.41.21.52
Pore wall thickness/μm2235272314384217.21313.3
Table 1  Wall thickness of macroporous silicon array etched at different electrochemical etching parameters
[1] LehmannV. The physics of macropore formation in low doped n-type silicon [J]. J. Electrochem. Soc., 1993, 140(10): 2836
[2] LinnorsJ, BadelX, KleimannP. Macro pore and pillar array formation in silicon by electrochemical etching [J]. Phys. Scr., 2006(1): 72
[3] SchmidtT, ZhangM, YuS, et al. Fabrication of ultra-high aspect ratio silicon nanopores by electrochemical etching [J]. Appl. Phys. Lett., 2014, 105(12): 14
[4] AbdidiD, RomdhaneS, BrunetbruneauA, et al. Microstructural characterization of porous silicon for use in optoelectronic devices [J]. Eur. Phys. J. Appl. Phys., 2009, 45(1): 10601
[5] SavioR L, GalliM, LiscidiniM, et al. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide [J]. Appl. Phys. Lett., 2014, 104(12): 19
[6] KumarA, KumarA, ChandraR. Fabrication of porous silicon filled Pd/SiC nanocauliflower thin films for high performance H2 gas sensor [J]. Sens. Actuators. B., 2018, 264: 10
[7] HarrazF A. Porous silicon chemical sensors and biosensors: A review [J]. Sens.Actuators. B. Chem., 2014, 202(10): 897
[8] SangerA, KumarA, ChauhanS, et al. Fast and reversible hydrogen sensing properties of Pd/Mg thin film modified by hydrophobic porous silicon substrate [J]. Sens.Actuators. B. Chemical, 2015, 213: 252
[9] IsmailM M, RasheedB G, Al-HamdaniA H, et al. Photovoltaic properties enhancement of solar cell based on porous silicon [J]. Optik., 2017, 138(2): 359
[10] KooijE S, RamaA R, KellyJ J. Infrared induced visible emission form porous silicon: the mechanism of anodic oxidation [J]. Surf. Sci., 2017, 370(2): 125
[11] LehmannV, G?seleU. Porous silicon formation: A quantum wire effect [J]. Appl. Phys. Lett., 1991, 58(8): 856
[12] LehmanV, F?llH. Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon [J]. J. Electrochem. Soc., 1990, 137(137): 653
[13] CarstensenJ, ChristophersenM, HasseG, et al. Parameter Dependence of Pore Formation in Silicon within a Model of Local Current Bursts [J]. Phys. Status. Solidi., 2000, 182(1): 63
[14] CarstensenJ, ChristophersenM, F?llH. Pore formation mechanisms for the Si-HF system [J]. Mater. Sci. Eng. B., 2000, s69-70: 23
[15] McgregorD S, BellingerS L, ShultisJ K. Present status of microstructured semiconductor neutron detectors [J]. J. Cryst. Growth., 2013, 379(5): 99
[16] ParkerS, UherJ, Fr?jdhC, Jak?bekJ, et al. Characterization of 3D thermal neutron semiconductor detectors [J]. Nucl. Instrum. Methods Phys. Res., 2007, 576(1): 32
[17] BaderX, LinneosJ, KleimannP, et al. Metallized and oxidized silicon macropore arrays filled with a scintillator for CCD-based X-ray imaging detectors [J]. IEEE. T. Nucl. Sci., 2004, 51(3): 1001
[18] LeiY H, LiuX, GuoJ C, ZhaoZ G. Development of x-ray scintillator functioning also as an analyser grating used in grating-based x-ray differential phase contrast imaging [J]. Chin. Phys. B., 2011, 20(4): 222
[19] KleimannP, BadelX, LinnrosJ. Toward the formation of three-dimensional nanostructures by electrochemical etching of silicon [J]. Appl. Phys. Lett., 2005, 86(18): 1187
[20] KleimannP, LinnrosJ, PeterssonS. Formation of wide and deep pores in silicon by electrochemical etching [J]. Mater. Sci. Eng. B., 2000, 69: 29
[21] BadelX, KumarR R. Formation of ordered pore arrays at the nanoscale by electrochemical etching of n-type silicon [J]. Superlattice Microst., 2004, 36(1): 245
[22] ZhanC Y, ZouY, JiangW, et al. Study of electrical current reconstruction on macropore arrays etched electrochemically on lightly-doped n-Si [J]. Appl. Surf. Sci., 2016, 362: 538
[23] JiangW, ZouY, WuJ C, et al. Effects of solution composition on morphology of macropore arrays etched by electrochemical etching on high ρ n-Si [J]. J. Funct. Mater., 2013, 44(15): 2222.
[23] (蒋 稳, 邹 宇, 伍建春等. (腐蚀液配方对刻蚀高阻硅多孔阵列结构形貌影响的研究 [J]. 功能材料, 2013, 44(15): 2222)
[24] ParkJ, YanagidaY, HatsuzawaT. Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources [J]. Sens. Actuators. B. Chemical, 2016, 233: 136
[25] ZhangH, LiY, ChenH, et al. Perceptual Contrast Enhancement with Dynamic Range Adjustment [J]. Optik, 2013, 124(23): 5906
[26] ChenT T, GuD, YuH N, et al. Morphology study of electrochemically etched silicon pore array [J]. Electron. Compos. Mater., 2015, 34(11): 48
[26] (陈婷婷, 顾 牡, 于怀娜等. (电化学刻蚀多孔硅阵列的形貌研究 [J]. 电子元件与材料, 2015, 34(11):48)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!