Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (4): 278-282    DOI: 10.11901/1005.3093.2017.398
ARTICLES Current Issue | Archive | Adv Search |
Low-temperature Deposition of α-(Al,Cr)2O3 Films by Reactive Sputtering Method
Wanqi QIU1(), Shulin WANG1, Yitian CHENG1, Zhongwu LIU1, Xichun ZHONG1, Dongling JIAO1, Kesong ZHOU1,2
1 College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Guangdong Research Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China
Cite this article: 

Wanqi QIU, Shulin WANG, Yitian CHENG, Zhongwu LIU, Xichun ZHONG, Dongling JIAO, Kesong ZHOU. Low-temperature Deposition of α-(Al,Cr)2O3 Films by Reactive Sputtering Method. Chinese Journal of Materials Research, 2018, 32(4): 278-282.

Download:  HTML  PDF(2575KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corundum structure oxide films were successfully deposited by HPPMS (High Power Pulsed Magnetron Sputtering) method by reactive sputtering Al- and AlCr alloy-target respectively at low-temperature. The surface morphology, phase constituent, chemical composition and mechanical property of the as-deposited films were analyzed by SEM (Scanning Electron Microscopy), GIXRD (Grazing Incidence X-ray Diffraction), EDS (Energy Dispersive Spectroscopy) and Hysitron TI 950 nanoindentation, respectively. Results show that Al2O3 films deposited by sputtering Al target contain a large number of droplet-particles caused by micro-arcing on the target-surface during reactive sputtering process. The droplet-particles not only increase the surface roughness but micro-porosity in the film as well, which then greatly decreases the film hardness. The micro-arcing can be effectively eliminated by using Al-50% Cr alloy target. The stable sputtering process ensures the deposition of smooth and compact films, thereby increases the film hardness greatly. The corundum phase films of α-(Al,Cr)2O3 could be fabricated at 540℃ and 10% O2 partial pressure.

Key words:  surface and interface in the materials      oxide films      α-(Al,Cr)2O3      high power pulsed magnetron sputtering      AlCr alloy target      nanoindentation     
Received:  03 July 2017     
Fund: Supported by National Natural Science Foundation of China (No. 51271079), Natural Science Foundation of Guangdong Province (No. 2015A030313223)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.398     OR     https://www.cjmr.org/EN/Y2018/V32/I4/278

Fig.1  Surface and cross-section (inset) SEM micrographs of the film deposited at 540℃ temperature and 10% O2 partial pressure (a) AlCr alloy target; (b) Al target
Fig.2  GIXRD spectra of films deposited with AlCr target (a) and Al target (b)
Fig.3  EDS spectrum of films at 500℃ (a), 520℃ (b), 540℃ (c)
Fig.4  Nanoindentation curves of films ofAl2O3 film (a) and α-(Al,Cr)2O3 film (b) deposited by HPPMS (540℃+10%O2)
[1] Zhang M, Xu B, Ling G.Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating[J]. Appl. Surf. Sci., 2015, 331(1): 1
[2] Edlmayr V, Moser M, Walter C, et al.Thermal stability of sputtered Al2O3 coatings[J]. Surf. Coat. Technol., 2010, 204: 1576
[3] Levin I, Brandon D.ChemInform Abstract: Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences[J]. J. Am. Ceram. Soc., 1998, 29(43): 1995
[4] Ruppi S.Deposition, microstructure and properties of texture-controlled CVD α-Al2O3 coatings[J]. Int. J. Refract. Met. Hard Mater., 2005, 23(4): 306
[5] Mao X H, Liu Y F, Zhang H K, et al.Investigation of hysteresis loops of alumina films deposited by pulsed reactive sputtering aluminum targets[J]. Vac. Sci. Technol., 2000, 20(2): 88(茅昕辉,李云峰,张浩康等. 铝靶脉冲反应溅射沉积氧化铝薄膜中的迟滞回线的研究[J]. 真空科学与技术学报, 2000, 20(2): 88)
[6] Wallin E, Andersson J M, Lattemann M, et al.Influence of residual water on magnetron sputter deposited crystalline Al2O3 thin films[J]. Thin Solid Films, 2008, 516(12): 3877
[7] Zywitzki O, Hoetzsch G. Influence of coating parameters on the structure and properties of Al2O3 layers reactively deposited by means of pulsed magnetron sputtering [J]. Surf. Coat. Technol., 1996, s86-87(86): 640
[8] Sproul W D, Christie D J, Carter D C.Control of reactive sputtering processes[J]. Thin Solid Films, 2005, 491(1-2): 1
[9] Wallin E, Selinder T I, Elfwing M, et al.Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering[J]. EPL(Europhysics Letters), 2008, 82: 36002
[10] Jin P, Xu G, Tazawa M, et al.Low temperature deposition of α- Al2O3 thin films by sputtering using α-Cr2O3 template[J]. J. Vac. Sci. Technol. A. Vac. Surf. Films, 2002, 20(6): 2134
[11] Andersson J M, Czigány Z, Jin P, et al.Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers[J]. J. Vac. Sci. Technol. A. Vac. Surf. Films, 2004, 22(1): 117
[12] Eklund P, Sridharan M, Sillassen M, et al.α-Cr2O3 template-texture effect on α-Al2O3 thin-film growth[J]. Thin Solid Films, 2008, 516(21): 7447
[13] Hairsworth S V, Page T F.Nanoindentation studies of the chemomechanical effect in sapphire[J]. J. Mater. Sci., 1994, 29(21): 5529
[14] He D, Li S, Liu X P, et al.Influence of annealing treatment on composition, crystal shape and microstructure of MOCVD alumina films[J]. Rare Metals, 2012, 36(5): 762(何笛,李帅,刘晓鹏等. 退火处理对MOCVD氧化铝薄膜成分、晶型及微观结构的影响[J]. 稀有金属, 2012(5): 762)
[15] Lin J, Sproul W D.Structure and properties of Cr2O3 coatings deposited using DCMS, PDCMS, and DOMS[J]. Surf. Coat. Technol., 2015, 276: 70
[16] Mchale J M, Auroux A, Perrotta A J, et al.Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas[J]. Science, 1997, 277(5327): 788
[17] Shang K, Zhao Z Y, Hou H L.Hysteretic deformation test and finite element analysis of DP600 bending deformation[J]. J. Net. Form. Eng., 2014, 6(5): 59(尚可, 赵志勇, 候红亮. DP600弯曲变形滞后回弹试验及有限元探究[J]. 精密成型工程, 2014, 6(5): 59)
[18] Oliver W C, Pharr G M J. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation[J]. J. Mater. Res., 1992, 7: 1564
[19] Holleck H.Material selection for hard coatings[J]. J. Vac. Sci. Technol. A. Vac. Surf. Films, 1986, 4(6): 2661
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[7] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[12] XIE Ruifeng, WU Yunfei, TANG Baixiao. Pullout Behavior of Steel Fiber in Ultra-high-performance Concrete Subjected to Freeze-thaw[J]. 材料研究学报, 2021, 35(6): 433-440.
[13] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[14] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[15] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
No Suggested Reading articles found!