Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (4): 271-277    DOI: 10.11901/1005.3093.2017.295
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Gas Separation Properties of PIM-CO19 Based Thermally Induced Rigid Membranes
Yunhua LU1(), Jican HAO1, Lin LI2, Jing SONG2, Guoyong XIAO1, Tonghua WANG2()
1 School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
2 State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Yunhua LU, Jican HAO, Lin LI, Jing SONG, Guoyong XIAO, Tonghua WANG. Preparation and Gas Separation Properties of PIM-CO19 Based Thermally Induced Rigid Membranes. Chinese Journal of Materials Research, 2018, 32(4): 271-277.

Download:  HTML  PDF(1380KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

3,3’-diethyl-5,5’,6,6’-tetrahydroxy-3,3’,2-trimethyl-1,1’-spirobisindane was synthesized from pyrocatechol and 2-butanone, then the yellow polymers of intrinsic microporosity (PIM-CO19) were prepared from the 3,3’-diethyl-5,5’,6,6’-tetrahydroxy-3,3’,2-trimethyl-1,1’-spirobisindane and 2,3,5,6-tetrafluorotere phthalonitrile. The structures and properties of the PIM-CO19 polymer were characterized by Fourier transform infrared (FTIR), mass spectrometry (MS), X-ray photoelectron spectrometer (XPS), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and gas permeability test. The PIM-CO19 polymer membranes were thermally treated at 300℃, 350℃ and 400℃ in N2 atmosphere, respectively. The structures and properties of the PIM-CO19 based thermally induced rigid membranes were characterized by FTIR, X-ray diffraction (XRD) and the gas permeability testing. The results show that the crosslinking reaction of PIM-CO19 was thermally induced, and the gas permeabilities of the PIM-CO19 based thermally induced rigid membranes were further improved by controlling the processing temperature. Especially for the PIM-CO19-350, the permeabilities of H2, O2, N2, CO2 and CH4 are 1758 Barrer, 586 Barrer, 180 Barrer, 4075 Barrer and 277 Barrer separately. When the treatment temperature reached 400℃, the permeabilities of the gas separation membranes were decreased, but the selectivity was improved. The selectivity of O2/N2 and CO2/CH4 were 4.76 and 38.78, respectively.

Key words:  organic polymer materials      polymers of intrinsic microporosity      gas separation      thermally induced rigid membrane      permeability      selectivity     
Received:  03 May 2017     
Fund: Supported by National Natural Science Foundation of China (Nos. 21406102, 21436009, 21506020 & 21676044) and the Talent Project of Educational Commission of Liaoning Province (No. LJQ2015053)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.295     OR     https://www.cjmr.org/EN/Y2018/V32/I4/271

Fig.1  Synthesis of polymers of intrinsic microporosity PIM-CO19
Fig.2  Mass spectrum of 3,3’-diethyl-5,5’,6,6’-tetrahydroxy-3,3’,2-trimethyl-1,1’-spirobisindane
Fig.3  FTIR spectra of 3,3’-diethyl-5,5’,6,6’-tetrahydroxy-3,3’,2-trimethyl-1,1’-spirobisindane
Fig.4  FTIR spectra of PIM-CO19 and corresponding thermally reduced rigid membranes
Fig.5  Thermal cross linking structure of PIM-CO19
Fig.6  XPS of PIM-CO19 and corresponding thermally reduced rigid membranes (a) C 1s; (b) N 1s
Fig.7  DSC curves of PIM-CO19 polymer
Fig.8  TGA analysis of PIM-CO19 polymer
Fig.9  XRD curves of PIM-CO19 and corresponding thermally reduced rigid membranes
Sample Permeabilities/Barrera Ideal selectivity
H2 O2 N2 CO2 CH4 O2/N2 CO2/CH4
PIM-CO19 1562 483 140 3044 195 3.45 15.61
PIM-CO19-300 1606 508 159 3569 225 3.19 15.85
PIM-CO19-350 1758 586 180 4075 277 3.26 14.70
PIM-CO19-400 1437 369 78 2150 55 4.76 38.78
Table 1  Gas separation properties of PIM-CO19 and corresponding thermally reduced rigid membranes
Fig.10  Permeability/selectivity tradeoff of PIM-CO19 and corresponding thermally reduced rigid membranes (a)O2/N2 vs O2; (b) CO2/CH4 vs CO2
[1] Chen X, Wang Y, Jiang L.Research progress of preparation methods of CO2-favored permeation membranes[J]. Chem. J. Chin. Univ., 2013, 34: 249(陈曦, 王耀, 江雷. CO2选择性透过膜材料的制备[J]. 高等学校化学学报, 2013, 34: 249)
[2] Yu B, Liu X M, Cong H L, et al.Research progress of modification and application of polymer membrane for gas separation[J]. New Chem. Mater., 2015, 43(5): 230(于冰, 刘小冕, 丛海林等. 聚合物气体分离膜改性及应用进展[J]. 化工新型材料, 2015, 43(5): 230)
[3] Ren H T, Wang Z G, Zhang F, et al.Progress of microporous polyimide membranes for gas separation[J]. J. Funct. Polym., 2016, 29: 377(任会婷, 王正宫, 张丰等. 微孔PI气体分离膜的研究进展[J]. 功能高分子学报, 2016, 29: 377)
[4] Wu X M, Zhang Q G, Zhu A M, et al.Advances in structure controls and modifications of PIMs membranes for gas separation[J]. Prog. Chem., 2014, 26: 1214(吴新妹, 张秋根, 朱爱梅等. 自具微孔高分子气体分离膜的结构调控与改性研究[J]. 化学进展, 2014, 26: 1214)
[5] Xu S J, Liang L Y, Li B Y, et al.Research progress on microporous organic polymers[J]. Prog. Chem., 2011, 23: 2085(徐叔军, 梁丽芸, 李步怡等. 有机微孔聚合物研究进展[J]. 化学进展, 2011, 23: 2085)
[6] McKeown N B, Budd P M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chem. Soc. Rev., 2006, 35: 675
[7] Budd P M, McKeown N B, Fritsch D. Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications [J]. Macromol. Symp., 2006, 245-246: 403
[8] Fritsch D, Bengtson G, Carta M, et al.Synthesis and gas permeation properties of spirobischromane-based polymers of intrinsic microporosity[J]. Macromol. Chem. Phys., 2011, 212: 1137
[9] Chen Y R, Chen L H, Chang K S, et al.Structural characteristics and transport behavior of triptycene-based PIMs membranes: a combination study using ab initio calculation and molecular simulations[J]. J. Memb. Sci., 2016, 514: 114
[10] Tocci E, De Lorenzo L, Jansen J C, et al.Intrinsic microporosity polymers (tb-pims) membrane of new generation: molecular modelling and permeation properties[J]. Proc. Eng., 2012, 44: 113
[11] Khan M M, Bengtson G, Neumann S, et al.Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity[J]. RSC Adv., 2014, 4: 32148
[12] Robeson L M.Correlation of separation factor versus permeability for polymeric membranes[J]. J. Memb. Sci., 1991, 62: 165
[13] Robeson L M.The upper bound revisited[J]. J. Memb. Sci., 2008, 320: 390
[14] Freeman B D.Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32: 375
[15] Du N Y, Dal-Cin M M, Robertson G P, et al. Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation[J]. Macromolecules, 2012, 45: 5134
[16] Li F Y, Chung T S.Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production[J]. Int. J. Hydrogen Energy, 2013, 38: 9786
[17] Li F Y, Xiao Y C, Chung T S, et al.High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development[J]. Macromolecules, 2012, 45: 1427
[18] Lu Y H, Hao J C, Li L, et al.Synthesis of thermally induced rigid membranes and their gas separation properties[J]. Acta Polym. Sin., 2016, (8): 1145(鲁云华, 郝继璨, 李琳等. 热致刚性膜材料的合成与气体分离性能研究[J]. 高分子学报, 2016, (8): 1145)
[19] Xiao Y C, Shao L, Chung T S, et al.Effects of thermal treatments and dendrimers chemical structures on the properties of highly surface cross-linked polyimide films[J]. Ind. Eng. Chem. Res., 2005, 44: 3059
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[5] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
No Suggested Reading articles found!