Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (4): 301-308    DOI: 10.11901/1005.3093.2017.192
ARTICLES Current Issue | Archive | Adv Search |
Effect of Anodizing Electrolyte Formula on Quality of Oxidizing Film on Ti6Al4V
Qian WANG, Daihua HE(), Ping LIU, Xinkuan LIU, Fengcang MA, Wei LI, Xiaohong CHEN, Ke ZHANG
School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Cite this article: 

Qian WANG, Daihua HE, Ping LIU, Xinkuan LIU, Fengcang MA, Wei LI, Xiaohong CHEN, Ke ZHANG. Effect of Anodizing Electrolyte Formula on Quality of Oxidizing Film on Ti6Al4V. Chinese Journal of Materials Research, 2018, 32(4): 301-308.

Download:  HTML  PDF(5977KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The anodizing film on Ti6Al4V was prepared via anodic oxidizing in electrolyte of 0.5 mol/L hydrofluoric acid with different addition amount of 5 g/L Ca(H2PO4)2. Then the effect of Ca and P on the phase composition, surface morphology and adhesive strength of the anodizing film was investigated. Hydroxyapatite coatings were deposited on the Ti6Al4V with oxidizing film by hydrothermal-electrochemical method and then of which the biological activity was examined by cell adhesion experiment. Results show that the diameter of TiO2- tubes of the anodizing film prepared in the bath with Ca(H2PO4)2 was lager than that without Ca(H2PO4)2, and the Ca- and P-content for the former film increased, especially Ca. HA coatings presented layered structure, of which the much compact inner portion composed of rod-like grains and the top portion presented flocculent oxidizing film. The adhesive strength between the coating and the substrate increases from 18.93 MPa to 23.74 MPa. During the cell adhesion experiment, it was easily for cells to attached on the flocculent surface of HA coatings, which can supply bigger space for cells to live, therewith, increasing the combination of implants and the human body.

Key words:  inorganic non-metallic materials      Ca(H2PO4)2      anodic oxidation      hydrothermal-electrochemical      cell adhesion experiment     
Received:  17 April 2017     
Fund: Supported by Key Laboratory of Inorginic Coating Materials, Chinese Academy of Sciences (No. KLICM-2014-11), and Shanghai Municipal Natural Science Foundation Sponsored by Shanghai Municipal Science and Technology Commissions (No. 15ZR1428300)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.192     OR     https://www.cjmr.org/EN/Y2018/V32/I4/301

Fig.1  XRD patterns of Ti6Al4V substrates subjected to anodic oxidation in different electrolytes (a) no Ca(H2PO4)2; (b) with Ca(H2PO4)2
Fig.2  SEM micrographs of Ti6Al4V substrates subjected to anodic oxidation in different Electrolytes (a) (c) no Ca(H2PO4)2; (b) (d) with Ca(H2PO4)2
Fig.3  Energy spectrum subjected to anodic oxidation in HF electrolytes
Fig.4  Energy spectrum subjected to anodic oxidation in HF- Ca(H2PO4)2 electrolytes
Fig.5  XRD patterns of Ti6Al4V substrates subjected to anodic oxidation in different electrolytes (a) no Ca(H2PO4)2 (b) with Ca(H2PO4)2
Fig.6  SEM micrographs of HA coated substrates after anodic oxidation treatment in different electrolytes (a) (c) no Ca(H2PO4)2 (b) (d) with Ca(H2PO4)2
Fig.7  Cross-section SEM micrographs of HA coating deposited in different Electrolytes (a) no Ca(H2PO4)2 (b) with Ca(H2PO4)2
Fig.8  Data of cell increment under different conditions
Fig.9  Adhesion of cells on the hydroxyapatite coating (a) (b) cell adhesion morphology in electrolyte with Ca(H2PO4)2
[1] Paulina Str?kowska, René Beutner, Marcin Gnyba.Electrochemically assisted deposition of hydroxyapatite on Ti6Al4Vsubstrates covered by CVD diamond films—Coating characterization and first cell biological results[J]. Mater. Sci. Eng. C, 2016, 59: 624
[2] R.E, Neuendorf, E. Saiz, A.P. Tomsia, et al. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds[J]. Acta. Biomater., 2008, 4(5): 1288
[3] Sun X, Yang X Y, Su Y, et al.Morphology Improvement of Sandblasted and Acid-Etched Titanium Surface and Osteoblast Attachment Promotion by Hydroxyapatite Coating[J]. Rare. Metal. Mat. Eng., 2015, 44(1): 0067
[4] Gu J B, Li H, Yang H X, et al.The Development of Microstructure Formation in Plasma Sprayed Hydroxyapatite Coatings[J]. Therm. Spray Technol., 2014, 6(1): 10(谷佳宾, 李辉, 杨海鑫等. 等离子喷涂羟基磷灰石涂层微观组织形成的研究现状[J]. 热喷涂技术, 2014, 6(1): 10)
[5] Shi H Y, Hu R, Lin C J.A study on controllable preparation of nanohydroxyapatite coatings on Ti substrate by electrochemical deposition[J]. J. Funct. Mater., 2006, 37(1): 98(时海燕, 胡仁, 林昌健. 电沉积法可制备纳米羟基磷灰石涂层的研究, 功能材料[J]. 功能材料, 2006, 37(1): 98)
[6] P. Layrolle, C. Van der valk, R. Dalmeijer, Biomimetic calcium phosphate coatings and their biological performances [J]. Key Eng. Mater., 2001,192-195: 391
[7] E. Antonov, V. Bagratashvili, M. Ball, Influence of target density on properties of laser deposited calcium phosphate coatings [J]. Key Eng. Mater., 2001, 192-195: 107
[8] GAO Y L, Xiong D S.Study on plasma sprayed hydroxyapatite coating on magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2011, 32(1): 109(高亚丽, 熊党生. 医用镁合金等离子喷涂羟基磷灰石涂层研究[J]. 材料热处理学报, 2011, 32(1): 109)
[9] Han J Y, Yu Z T, Zhou L.Effects of composite TiO2 on the crystal of hydroxyapatite prepared by sol- gel method[J]. Heat Treat. Met., 2008, 33(7): 12(韩建业, 于振涛, 周廉. TiO2对溶胶凝胶法制备羟基磷灰石晶化的影响[J]. 金属热处理, 2008, 33(7): 12)
[10] N. Eliaz, M. Eliyahu.Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy[J]. J. Biomed. Mater. Res., Part A, 2007, 80A(3): 621
[11] F. Ma, P. Liu, W. Li, et al.Hydroxyapatite growth on Ti MAO surface assisted by the addition of calcium and phosphate ions in hydrothermal treatment solution[J]. Rare. Metal. Mat. Eng., 2012,41: 478
[12] Zhang L Y, Gao Y, Liu Z X, et al.Preparation and Characterization of N-Doped TiO2 Nanotube[J]. Rare. Metal., 2011, 35(4): 504(张理元, 曹阳, 刘钟馨等. 氮掺杂二氧化钛纳米管的制备及表征[J]. 稀有金属, 2011, 35(4): 504)
[13] Wang Q, Wang W, Cui F Y, et al.Preparation modification and application of titanium dioxide nanotubes[J]. Chem. Ind. Eng. Prog., 2015, 34(5): 1311(王俏, 王威, 崔福义等. 二氧化钛纳米管的制备、改性及应用, 化工进展[J]. 2015, 34(5): 1311)
[14] B. Yang, M. Uchida, H. Kim, et al.Preparation of bioactive titanium metal via anodic oxidation treatment[J]. Biomaterials, 2004, 25(6): 1003
[15] Wang P.Influence of anodic oxidation pretreatment on Ti6Al4V alloy and the HA coating deposited by hydrothermal- electrochemical methods [D]. Master Thesis, University of Shanghai for Science and Technology, 2015(王朴. 阳极氧化处理钛合金对水热电化学沉积HA涂层的影响, 硕士学位论文, 上海理工大学, 2015)
[16] Qiao L P, Jiang L F, Huang H D, et al.Effects of calcium salts and KOH concentrations on surface morphology and chemical compositions of micro arc oxidation coatings on titanium alloys[J]. Chin. J. Nonferrous Met., 2015, 25(6): 1590(乔丽萍, 江龙发, 黄华德等. 钙盐和氢氧化钾浓度对钛合金微弧氧化表面形貌及成分的影响[J]. 中国有色金属学报, 2015, 25(6): 1590)
[17] Yang X C, Cui X l, Ren P, et al. Influence of post-treatment process on the bioactivity of anodized titanium[J]. J. Funct. Mater.,2015, 46(1):01135(杨修春, 崔晓琳, 任鹏等. 后处理工艺对阳极氧化钛生物活性的影响[J]. 功能材料, 2015, 46(1): 01135)
[18] Gong X.Preparation and biological assessment of strontium- subtituted nanohydroxyapatite coating on sandblasted-dual acid etched titanium surface [D]. Master Thesis, Zhejiang University School of Medicine, 2012(龚雪. 多孔纯钛表面纳米掺锶羟基磷灰石涂层构建及其生物学评价 [D]. 硕士学位论文, 浙江大学, 2012)
[19] Liang J H, Xiao X F, Liu R F, et al.Fabrication and Thermal Stability of TiO2 Nanotube Arrays by Anodic Oxidation at Wide Range of Voltage[J]. Chin. J. Inorg. Chem., 2010, 26(1): 112(梁建鹤, 肖秀峰, 刘榕芳等. 宽电压范围下阳极氧化制备TiO2纳米管阵列及其热稳定性[J]. 无机化学学报, 2010, 26(1): 112)
[20] Katarzyna Suchanek, Amanda Bartkowiak, Agnieszka Gdowik, et al.Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates[J]. Mater. Sci. Eng. C, 2015, 51: 57
[21] D W Gong, Craig A, Grimes, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J. Mater. Res., 2001, 16(12): 3331
[22] Li W P, Shi P, Preparation and Its Forming Mechanism of Micron-Dimensional Porous TiO2 Films on the Surface of Pure Titanium[J]. Rare. Metal. Mat. Eng., 2008, 37(12): 2253(李维平, 石萍. 纯钛表面微米级多孔TiO2薄膜的制备及形成机制[J]. 稀有金属材料与工程, 2008, 37(12): 2253)
[23] Tao H J, Tao J, Wang L, et al.Fabrication of nano-porous TiO2 films on pure titanium and its alloy[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(5): 597(陶海军, 陶杰, 王玲. 纯钛及其合金表面纳米多孔TiO2膜的制备研究[J]. 南京航空航天大学学报, 2005, 37(5): 597)
[24] Shirkhanzadeh M, Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes[J]. J. Mater. Sci., 1998, (2): 67
[25] Ban S, Maruno S, Harada A, et al.Effect of temperature on morphology of electrochemically-deposited calcium phosphates[J]. Dent. Mater. J.,1996, 15(1): 31
[26] Du J, He D H, Liu P, et al.Hydroxyapatite Coatings on Titanium Substrate Prepared by Hydrothermal-Electrochemical Deposition[J]. Chin. J. Mater. Res., 2016, 30(10):787
[27] Yan X K, Bioseparation Engineering [M]. Beijing, Chemical Industry Press, 2001
[28] J WANG, Y G CHAO, Q B WAN, Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition[J]. Acta. Biomater., 2009, 5(5): 1798
[29] Park H H, Park I S, Kim K S, et al.Bioactive and electrochemical charaterization of TiO2 nanotubes on titanium via anodic oxidation[J]. Electrochimica. Acta., 2010, 55(20): 6109
[30] Fu T, Li H, Zhang Y M, et al.Effect of Current Density Changes on the Properties of Hydroxyapatite Biocoatings[J]. Rare. Metal. Mat. Eng., 2000, 29(4):247(付涛, 李浩, 张玉梅等. 电流密度对电结晶羟基磷灰石生物涂层性能的影响[J]. 稀有金属材料与工程, 2000, 29(4): 247)
[31] R ZHANG, Y WAN, X AI, et al.Preparation of micro-nanostructure on titanium implants and its bioactivity[J]. Nonferrous. Met. Soc. China, 2016, 26(4): 1019
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!