|
|
Effect of Heat Input on Low-temperature Flexibility of Weld Seams of a Hull Steel via Gas-shielded Welding with Filler of Marine High Strength Flux-cored Wire |
Yayun ZHANG1,2, Jinshan WEI2, Tongbang AN2, Yusong XU1( ), Chengyong MA2 |
1 College of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China 2 Welding Research Institute of Iron and Steel Research Institute, Beijing 100081, China |
|
Cite this article:
Yayun ZHANG, Jinshan WEI, Tongbang AN, Yusong XU, Chengyong MA. Effect of Heat Input on Low-temperature Flexibility of Weld Seams of a Hull Steel via Gas-shielded Welding with Filler of Marine High Strength Flux-cored Wire. Chinese Journal of Materials Research, 2018, 32(4): 309-314.
|
Abstract Plates of a hull steel were weld via CO2 gas-shielded arc welding with marine high strength flux-cored wire as filler and by three different heat inputs i.e. 8 kJ/cm,14 kJ/cm and 20 kJ/cm respectively, while the effect of heat input on the microstructure and low-temperature flexibility of the weld seams was investigated by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and materials-electron backscatter diffraction. Results show that the microstructure of the weld metal consists of mainly acicular ferrite, ferrite side-plate and a small amount of residual austenite for three different heat inputs. As the heat input increases the ferrite changes from acicular to lath, in which the acicular ferrite content decreases, side-plate ferrite increases and the residual austenite between them also changes from film-like to block. In addition, with the increasing heat input, inclusions with diameter below 1 μm in the deposited metal decrease, while the total amount of inclusions increases, and the large angle grain boundaries between the strips decrease. Consequently, the low-temperature flexibility of the weld seam decreases, and the fracture surface also transformed from dimple- and quasi cleavage-like to cleavage-like.
|
Received: 06 September 2017
|
[1] | Liu P C, Zheng Z, Fu B Q.SF-36E flux cored wire and GY945 solid wire test [A]. The 9th National Welding Symposium[C]. Harbin, 1999(刘培晟, 郑赞, 傅炳起. SF-36E药芯焊丝和GY945实芯焊丝的比较试验研究 [A]. 第九次全国焊接会议论文集[C]. 哈尔滨,1999) | [2] | Li L S, Luan J Y, Sun X H, et al.Analysis of development of welding materials in China oen[J], China Electrical Equipment Industry, 2010, (1): 10(李连胜, 栾敬岳, 孙晓红等. 我国焊接材料发展状况浅析[J], 电器工业, 2010, (1): 10) | [3] | Song F Y, Li Y M, Wang P, et al.Effects of heat input on the microstructure and impact toughness of a new flux cored wire deposited metal[J]. Acta Metall Sin, 2016, 52(7): 890(宋峰雨, 李艳梅, 王平等. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响[J]. 金属学报, 2016, 52(7): 890) | [4] | Jorge J C F, Souza L F G, Rebello J M A. The effect of chromium on the microstructure/toughness relationship of C-Mn weld metal deposits[J]. Mater. Charact, 2001, 47(3-4): 195 | [5] | Zhang D Q.Study on formation mechanism of acicular ferrite in weld metal of microalloyed steel[D]. Tianjin: Tianjin University, 2000(张德勤. 微合金钢焊缝金属中针状铁素体形成机理的研究[D]. 天津: 天津大学, 2000) | [6] | Zhang W Y.Welding Metallurgy[M]. Beijing: Metallurgy Machinery Industry Press, 2004)(张文钺. 焊接冶金学[M]. 北京: 机械工业出版社, 2004) | [7] | Bhadeshia H K D H, Edmonds D V. The bainite transformation in a silicon steel[J]. Metall. Mater. Trans. A, 1979, 10(7): 895 | [8] | Biss V, Cryderman R L.Martensite and retained austenite in hot-rolled, low-carbon bainitic steels[J]. Metall. Mater. Trans. B, 1971, 2(8): 2267 | [9] | Huang A G, Yu S F, Xie M L, et al.Microstructure of acicular ferrite in weld of low alloy steel[J]. Trans China Weld Inst, 2008, 29(3): 45(黄安国, 余圣甫, 谢明立等. 低合金钢焊缝的针状铁素体微观组织[J]. 焊接学报, 2008, 29(3):45) | [10] | Ricks R A, Howell P R, Barritte G S.The nature of acicular ferrite in HSLA steel weld metals[J]. J. Mater. Sci., 1982, 17(3): 732 | [11] | An T B, Shan J G, Wei J S, et al.Influence of heat input on microstructure and properties of steel joint for 1000MPa engineering machinery[J]. Chin J Mech Eng, 2014, 50(22): 42(安同邦, 单际国, 魏金山等. 热输入对1000 MPa级海洋工程用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42) | [12] | Xiao X M, Peng Y, Ma C Y, et al, Influence of shielding gas on microstructure and toughness of 440 MPa HSLA steel with GMAW[J]. Trans China Weld Inst, 2013, 34(7): 101(肖晓明, 彭云, 马成勇等. 保护气体对440MPa HSLA钢GMAW焊缝组织及韧性的影响[J]. 焊接学报, 2013, 34(7): 101) | [13] | Lan L Y, Qiu C L, Zhao D W, et al.Microstructure characteristics and toughness of different sub regions in welding heat affected zone of low carbon bainitic steel[J]. Acta Metall Sin., 2011, 47(8): 1046(兰亮云, 邱春林, 赵德文等. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性[J]. 金属学报, 2011, 47(8): 1046) | [14] | Cui Y X, Wang C L.Fracture Analysis of Metal [M]. Harbin: Harbin Institute of Technology press, 1998(崔约贤, 王长利. 金属断口分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|