|
|
Effect of Heat Treatment Process on Microstructure and Mechanical Properties of Titanium Alloy Ti6246 |
Guoqiang WANG1,2, Zibo ZHAO2( ), Bingbing YU2, Zhiyong CHEN2, Qingjiang WANG2, Rui YANG2 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
Guoqiang WANG, Zibo ZHAO, Bingbing YU, Zhiyong CHEN, Qingjiang WANG, Rui YANG. Effect of Heat Treatment Process on Microstructure and Mechanical Properties of Titanium Alloy Ti6246. Chinese Journal of Materials Research, 2017, 31(5): 352-358.
|
Abstract The influence of heat treatment temperature and cooling rate on the microstructure, phase and tensile deformation behavior of Ti-alloy Ti6246 alloy was investigated. The results show that the α′′ martensite was observed in prior β phase after solution heat treatment followed by water quenching. While a fine transformed β microstructure produced as a result of air cooling. For the air cooling alloy, both the size and volume fraction of the secondary α grain increased with the increasing solution heat temperature in air cooling samples. A “double yield” phenomenon appeared in the engineering stress-strain curves of the water quenching alloy samples. After aging treatment, the strength of water- and air-cooled alloys samples increased but the plasticity decreased. An optimal property in strength and ductility was achieved for the alloysamples after soluted solution treated at 900-920°C and then aged at 595°C.
|
Received: 24 October 2016
|
[1] | Wang G, Hui S X, Ye W J, et al.Influence of solution treatment on microstructure and mechanical properties of Ti-3.0Al-2.3Cr-1.3Fe titanium alloy[J]. Chin. J. Nonferrous Met.,2012, 22(11): 3015(王国, 惠松骁, 叶文君等. 固溶处理对Ti-3.0Al-2.3Cr-1.3Fe钛合金组织与力学性能的影响[J]. 中国有色金属学报, 2012, 22(11): 3015) | [2] | Davis R, Flower H M, West D R F, Martensitic transformations in Ti-Mo alloys[J]. J. Mater. Sci.,1979, 14(3): 712 | [3] | Li C F.Study on β→α″ Transformation in Ti-(3.5-4.5)Al-(3.5-5.5)Mo Titanium Alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012(李长富. Ti-(3.5-4.5)Al-(3.5-5.5)Mo钛合金中β→α″马氏体相变研究 [D]. 沈阳: 中国科学院金属研究所, 2012) | [4] | Li C L, Hui S X, Ye W J, et al.Effect of aging on microstructure and tensile properties of Ti-6Cr-5Mo-5V-4Al alloy[J]. Rare Metals, 2011, 35(01): 22(李成林,惠松骁,叶文君等. 时效对Ti-6Cr-5Mo-5V-4Al合金组织与拉伸性能的影响[J]. 稀有金属, 2011, 35(01): 22) | [5] | Boyer R, Welsch G, Collings E W, Materials Properties Handbook: Titanium Alloys[M]. American: ASM International, 1994 | [6] | Lütjering G, Williams J C, Titanium[M]. Berlin: Springer, 2007 | [7] | Evans W J, Jones J P, Williams S, The interactions between fatigue, creep and environmental damage in Ti 6246 and Udimet 720Li[J]. In. J. Fatigue., 2005, 27(10): 1473 | [8] | Wang Q J, Liu J R, Yang R.High temperature titanium alloys: status and perspective[J]. J. Aero. Mater., 2014, 34(04): 1(王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景. 航空材料学报, 2014, 34(4): 1) | [9] | Zhang X Y, Zhao Y Q, Bai C G.Titanium alloy and Application [M]. Beijing: Chemical Industry Press, 2005(张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005) | [10] | Xu G D, Wang F E.Development and application on high-temperature ti-based alloys[J]. Rare Metals, 2008, 32(06): 774(许国栋, 王凤娥, 高温钛合金的发展和应用[J]. 稀有金属, 2008, 32(6): 774) | [11] | Mao X N, Zhao Y Q, Yang G J.Development situation of the overseas titanium alloys used for aircraft engine[J]. Rare Metals Lett., 2007, 26(05): 1(毛小南, 赵永庆, 杨冠军. 国外航空发动机用钛合金的发展现状[J]. 稀有金属快报, 2007, 6(5): 1) | [12] | Lei J W, Tian Y, Lai Y J, et at. Effects of solution temperature on microstructure and mechanical properties of Ti6246 titanium alloy[J]. Heat Treat. Metal, 2015, 40(3): 133(雷锦文, 田云, 赖运金等. 固溶温度对Ti6246钛合金组织与性能的影响[J]. 金属热处理, 2015, 40(3): 133) | [13] | Stella P, Giovanetti I, Masi G, et al.Microstructure and microhardness of heat-treated Ti-6Al-2Sn-4Zr-6Mo alloy[J]. J. Alloys Compd. 2013, 567(0): 134 | [14] | Spurling R A, Rhodes C G, Williams J C, The microstructure of Ti alloys as influenced by Thin-foil artifacts[J]. Metall. Mater. Trans. B, 1974,5(12): 2597 | [15] | Bophcoba Е A. Chen S Q.Transl. Metallography of Titanium Alloy [M]. Beijing: National Defense Industry Press, 1986(E. A.鲍利索娃. 陈石卿译. 钛合金金相学 [M]. 北京: 国防工业出版社, 1986) | [16] | Ishiyama S, Hanada S, Izumi O.Effect of Zr, Sn and Al additions on deformation mode and beta phase stability of metastable beta Ti alloys[J]. ISIJ Int., 1991, 31(8): 807 | [17] | Zhang D C, Yang S, Wei M, Mao Y F, et al.Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn Alloys[J]. J. Mech. Behav. Biomed. Mater., 2012, 13(13): 156 | [18] | Zhang D C, Mao Y F, Li Y L, et al.Effect of ternary alloying elements on microstructure and superelastictity of Ti-Nb alloys[J]. Mater. Sci. Eng. A, 2013, 559(3): 706 | [19] | Paradkar A G, Kamat S V, Gogia A K, et al.Various stages in stress-strain curve of Ti-Al-Nb alloys undergoing SIMT[J]. Mater. Sci. Eng. A, 2007, 456(1-2): 292 | [20] | Kamat S V, Gogia A K, Kashyap B P.Effect of Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti-Al-Nb alloys[J]. Mater. Sci. Eng. A, 2008, 487(1-2): 14 | [21] | Li S J, Cui T C, Hao Y L, et al.Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation[J]. Acta Biomate., 2008, 4(2): 305 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|