Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (5): 352-358    DOI: 10.11901/1005.3093.2016.621
Orginal Article Current Issue | Archive | Adv Search |
Effect of Heat Treatment Process on Microstructure and Mechanical Properties of Titanium Alloy Ti6246
Guoqiang WANG1,2, Zibo ZHAO2(), Bingbing YU2, Zhiyong CHEN2, Qingjiang WANG2, Rui YANG2
1 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Guoqiang WANG, Zibo ZHAO, Bingbing YU, Zhiyong CHEN, Qingjiang WANG, Rui YANG. Effect of Heat Treatment Process on Microstructure and Mechanical Properties of Titanium Alloy Ti6246. Chinese Journal of Materials Research, 2017, 31(5): 352-358.

Download:  HTML  PDF(4841KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of heat treatment temperature and cooling rate on the microstructure, phase and tensile deformation behavior of Ti-alloy Ti6246 alloy was investigated. The results show that the α′′ martensite was observed in prior β phase after solution heat treatment followed by water quenching. While a fine transformed β microstructure produced as a result of air cooling. For the air cooling alloy, both the size and volume fraction of the secondary α grain increased with the increasing solution heat temperature in air cooling samples. A “double yield” phenomenon appeared in the engineering stress-strain curves of the water quenching alloy samples. After aging treatment, the strength of water- and air-cooled alloys samples increased but the plasticity decreased. An optimal property in strength and ductility was achieved for the alloysamples after soluted solution treated at 900-920°C and then aged at 595°C.

Key words:  metallic materials      Ti6246 alloy      heat treatment      cooling rate      α′′ martensite      tensile properties     
Received:  24 October 2016     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.621     OR     https://www.cjmr.org/EN/Y2017/V31/I5/352

Al Sn Zr Mo Si Fe H O N Ti
6.05 1.99 3.95 5.79 <0.01 0.015 0.0006 0.063 0.0020 Bal.
Table 1  Elemental compositions of the Ti6246 alloy (mass fraction, %)
Fig.1  Microstructure of as-received Ti6246 alloy
Fig.2  Microstructure of Ti6246 alloy after different heat treatment (a) 900℃/1 h/WQ, (b) 900℃/1 h/AC, (c) 900℃/1 h/WQ+595℃/8 h/AC, (d) 900℃/1 h/AC +595℃/8 h/AC
Fig.3  Microstructure of Ti6246 alloy after different heat treatment (a) 920℃/1 h/WQ, (b) 920℃/1 h/AC, (c) 920℃/1 h/WQ+595℃/8 h/AC, (d) 920℃/1 h/AC+595℃/8 h/AC
Fig.4  Microstructure of Ti6246 alloy after different heat treatment (a) 950℃/1 h/WQ, (b) 950℃/1 h/AC, (c) 950℃/1 h/WQ+595℃/8 h/AC, (d) 950℃/1 h/AC +595℃/8 h/AC
Fig.5  XRD patterns of Ti6246 after heat treatment at 920℃
Fig.6  XRD patterns of Ti6246 after water quenching
Fig.7  Engineering stress-strain curves of Ti6246 alloy at different heat treatment (a) 900℃, (b) 920℃, (c) 950℃
Solution
temperature
Cooling
mode
Rp0.2
/MPa
Rm
/MPa
A
/%
Z
/%
900℃ WQ 297 1106.5 16.25 43.5
AC 990 1232 14.25 43
WQ+AG 1383 1475 6.25 14.5
AC+AG 1292 1377.5 9.5 30
920℃ WQ 382.5 1099 10.5 16.5
AC 1136 1370.5 9.25 34
WQ+AG 1447.5 1497.5 0.5 1
AC+AG 1288 1390.5 8.5 23.5
950℃ WQ 444.5 1046.5 6.25 7
AC 1211 1368.5 0.5 1.5
WQ+AG - 1252 -- --
AC+AG - 1302 -- --
Table 2  Room temperature tensile properties of Ti6246 alloy after heat treatment
[1] Wang G, Hui S X, Ye W J, et al.Influence of solution treatment on microstructure and mechanical properties of Ti-3.0Al-2.3Cr-1.3Fe titanium alloy[J]. Chin. J. Nonferrous Met.,2012, 22(11): 3015(王国, 惠松骁, 叶文君等. 固溶处理对Ti-3.0Al-2.3Cr-1.3Fe钛合金组织与力学性能的影响[J]. 中国有色金属学报, 2012, 22(11): 3015)
[2] Davis R, Flower H M, West D R F, Martensitic transformations in Ti-Mo alloys[J]. J. Mater. Sci.,1979, 14(3): 712
[3] Li C F.Study on β→α″ Transformation in Ti-(3.5-4.5)Al-(3.5-5.5)Mo Titanium Alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012(李长富. Ti-(3.5-4.5)Al-(3.5-5.5)Mo钛合金中β→α″马氏体相变研究 [D]. 沈阳: 中国科学院金属研究所, 2012)
[4] Li C L, Hui S X, Ye W J, et al.Effect of aging on microstructure and tensile properties of Ti-6Cr-5Mo-5V-4Al alloy[J]. Rare Metals, 2011, 35(01): 22(李成林,惠松骁,叶文君等. 时效对Ti-6Cr-5Mo-5V-4Al合金组织与拉伸性能的影响[J]. 稀有金属, 2011, 35(01): 22)
[5] Boyer R, Welsch G, Collings E W, Materials Properties Handbook: Titanium Alloys[M]. American: ASM International, 1994
[6] Lütjering G, Williams J C, Titanium[M]. Berlin: Springer, 2007
[7] Evans W J, Jones J P, Williams S, The interactions between fatigue, creep and environmental damage in Ti 6246 and Udimet 720Li[J]. In. J. Fatigue., 2005, 27(10): 1473
[8] Wang Q J, Liu J R, Yang R.High temperature titanium alloys: status and perspective[J]. J. Aero. Mater., 2014, 34(04): 1(王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景. 航空材料学报, 2014, 34(4): 1)
[9] Zhang X Y, Zhao Y Q, Bai C G.Titanium alloy and Application [M]. Beijing: Chemical Industry Press, 2005(张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005)
[10] Xu G D, Wang F E.Development and application on high-temperature ti-based alloys[J]. Rare Metals, 2008, 32(06): 774(许国栋, 王凤娥, 高温钛合金的发展和应用[J]. 稀有金属, 2008, 32(6): 774)
[11] Mao X N, Zhao Y Q, Yang G J.Development situation of the overseas titanium alloys used for aircraft engine[J]. Rare Metals Lett., 2007, 26(05): 1(毛小南, 赵永庆, 杨冠军. 国外航空发动机用钛合金的发展现状[J]. 稀有金属快报, 2007, 6(5): 1)
[12] Lei J W, Tian Y, Lai Y J, et at. Effects of solution temperature on microstructure and mechanical properties of Ti6246 titanium alloy[J]. Heat Treat. Metal, 2015, 40(3): 133(雷锦文, 田云, 赖运金等. 固溶温度对Ti6246钛合金组织与性能的影响[J]. 金属热处理, 2015, 40(3): 133)
[13] Stella P, Giovanetti I, Masi G, et al.Microstructure and microhardness of heat-treated Ti-6Al-2Sn-4Zr-6Mo alloy[J]. J. Alloys Compd. 2013, 567(0): 134
[14] Spurling R A, Rhodes C G, Williams J C, The microstructure of Ti alloys as influenced by Thin-foil artifacts[J]. Metall. Mater. Trans. B, 1974,5(12): 2597
[15] Bophcoba Е A. Chen S Q.Transl. Metallography of Titanium Alloy [M]. Beijing: National Defense Industry Press, 1986(E. A.鲍利索娃. 陈石卿译. 钛合金金相学 [M]. 北京: 国防工业出版社, 1986)
[16] Ishiyama S, Hanada S, Izumi O.Effect of Zr, Sn and Al additions on deformation mode and beta phase stability of metastable beta Ti alloys[J]. ISIJ Int., 1991, 31(8): 807
[17] Zhang D C, Yang S, Wei M, Mao Y F, et al.Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn Alloys[J]. J. Mech. Behav. Biomed. Mater., 2012, 13(13): 156
[18] Zhang D C, Mao Y F, Li Y L, et al.Effect of ternary alloying elements on microstructure and superelastictity of Ti-Nb alloys[J]. Mater. Sci. Eng. A, 2013, 559(3): 706
[19] Paradkar A G, Kamat S V, Gogia A K, et al.Various stages in stress-strain curve of Ti-Al-Nb alloys undergoing SIMT[J]. Mater. Sci. Eng. A, 2007, 456(1-2): 292
[20] Kamat S V, Gogia A K, Kashyap B P.Effect of Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti-Al-Nb alloys[J]. Mater. Sci. Eng. A, 2008, 487(1-2): 14
[21] Li S J, Cui T C, Hao Y L, et al.Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation[J]. Acta Biomate., 2008, 4(2): 305
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!