Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (11): 827-832    DOI: 10.11901/1005.3093.2016.561
Orginal Article Current Issue | Archive | Adv Search |
Characteristic of Warm Laser Shock Peening of ЭП866 Heat Resistant Martensite Stainless Steel
Qinglai ZHANG1, Yuanyuan HE1, Bingxin ZHANG2
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
2 University of Michigan-Shanghai Jiao Tong University, Shanghai 200240, China.
Cite this article: 

Qinglai ZHANG, Yuanyuan HE, Bingxin ZHANG. Characteristic of Warm Laser Shock Peening of ЭП866 Heat Resistant Martensite Stainless Steel. Chinese Journal of Materials Research, 2017, 31(11): 827-832.

Download:  HTML  PDF(5564KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The warm laser shock peening (WLSP) of heat resistant martensite stainless steel ЭП866 was carried out by Nd glass pulse laser, and the microstructure and properties of the impacted layer were assessed by transmission electron microscopy and X-ray stress analyzer. The results show that WLSP has obvious strengthening effect compared to LSP at room temperature. Through dynamic strain aging (DSA) and dynamic precipitation (DP), the WLSP generates higher compressive residual stress, higher density dislocation structures and nano-scale precipitates on the impacted layer of the treated steel ЭП866.

Key words:  metallic materials,      ЭП866 stainless steel      WLSP      compressive residual stress      surface hardness      DSA     
Received:  26 September 2016     
Fund: Supported by National Natural Science Foundation of China (No. 51175231)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.561     OR     https://www.cjmr.org/EN/Y2017/V31/I11/827

Elements Fe C Mn Si S P Ni Cr W V Mo N Nb Co
Content 73.9 0.16 0.27 0.25 0.003 0.010 2.02 15.57 0.76 0.23 1.47 0.0665 0.29 5.0
Table 1  Chemical composition of ЭП866 stainless steel (mass fraction, %)
Fig.1  Diagram of optical path and fixture for WLSP
Fig.2  ЭП866 stainless steel after heat treatment (a) OM, (b) SEM
Fig.3  TEM images of ЭП866 stainless steel after heat treatment (a) martensite laths, (b) continuous precipitates
Fig.4  TEM images of ЭП866 stainless steel by LSP (a) martensitelaths, (b) tangled dislocation, (c, d) strip precipitattes
Fig.5  TEM images of ЭП866stainless steel by WLSP (a) martensitelaths, (b) tangled dislocation, (c) strip precipitates, (d) globular precipitates
Surface state Point 1 Point 2 Point 3 Non-LSP zone
Room LSP -388±39 -410±29 -387±40 -334±18
WLSP at 300℃ -415±15 -409±11 -469±24 -119±10
Table 2  Surface residual stresses of ЭП866 stainless steel at single shock zone (MPa)
Surface state Point 1 Point 2 Point 3 Mean value
Non-LSP zone 344.4 347.6 341.9 344.0
Room LSP 372.8 363.3 379.0 371.7
WLSP at 300℃ 394.2 397.0 401.1 397.4
Table 3  Surface micro-hardness (HV) of ЭП866 stainless steel at single shock zone
[1] Sun T F, Li X M, Song X Y, et al.The influence of forging technology on the structure and property of 1Cr16Co5Ni2Mo1WVNbN steel[J]. J. Shenyang Aerosp. Univ., 2012, 29(3): 38(孙铁峰, 李许明, 宋玺玉等. 锻造工艺对1Cr16Co5Ni2Mo1WVNbN钢组织和性能的影响[J]. 沈阳航空航天大学学报, 2012, 29(3): 38)
[2] Guo S J, Yan W, Zhang X L.Influence on the microstructure and properties of the chemical composition of martensitic stainless steel ЭП 866[J]. Sci. Technol. Eng., 2010, 10: 3471(郭淑娟, 闫伟, 张秀丽. 化学成分对马氏体不锈钢ЭП866组织与性能的影响[J]. 科学技术与工程, 2010, 10: 3471)
[3] Yang G, Liu Z D, Cheng S C, et al.Effect of heat treatment on impact toughness of heat-resistant steel ЭП866[J]. J. Iron Steel Res., 2002, 14(5): 30(杨钢, 刘正东, 程世长等. 热处理工艺对耐热钢ЭП866冲击韧性的影响[J]. 钢铁研究学报, 2002, 14(5): 30)
[4] Zhao X D, Bian L H, Sun G D, et al.Effect of forging technics on ЭП866 alloy structure and proparty[J]. J. Shenyang Inst. Aeronaut. Eng., 2004, 21(4): 32(赵兴东, 边丽虹, 孙贵东等. 锻造工艺对ЭП866合金组织和性能的影响[J]. 沈阳航空工业学院学报, 2004, 21(4): 32)
[5] Wang C, Lai Z B, He W F, et al.Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shock processing[J]. Chin. J. Lasers, 2014, 41: 0103001(汪诚, 赖志斌, 何卫锋等. 激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J]. 中国激光, 2014, 41: 0103001)
[6] Ye C, Liao Y L, Cheng G J.Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160[J]. Adv. Eng. Mater., 2010, 12: 291
[7] Ye C, Suslov S, Kim B J, et al.Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Mater., 2011, 59: 1014
[8] Liao Y L, Suslov S, Ye C, et al.The mechanisms of thermal engineered laser shock peening for enhanced fatigue performance[J]. Acta Mater., 2012, 60: 4997
[9] Zhang Q L, Wu T D, Zhang B X, et al.Experimental research of warm laser shock forming of AZ31 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 0903002(张青来, 吴铁丹, 张冰昕等. AZ31镁合金激光冲击温成形实验研究[J]. 中国激光, 2015, 42: 0903002)
[10] Zhang Q L, Zhang Q, Zhang B X, et al.Study on characteristic of warm laser shock peening of AZ80-T6 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 1006002(张青来, 张乔, 张冰昕等. AZ80-T6镁合金激光冲击温强化特性研究[J]. 中国激光, 2015, 42: 1006002)
[11] Zhang Q L, Liu H, Zhang B X, et al.Warm Laser shock peening and low cycle fatigue behavior of extruded AZ80-T6 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 1103004(张青来, 刘惠, 张冰昕等. AZ80-T6挤压镁合金激光冲击温强化和低周疲劳行为[J]. 中国激光, 2015, 42: 1103004)
[12] Liao Y L, Ye C, Cheng G J.Nucleation of highly dense nanoscale precipitates based on an innovative process: warm laser shock peening [A]. ASME 2010 International Manufacturing Science and Engineering Conference[C]. Erie, Pennsylvania, USA: ASME, 2010: 291
[13] Ye C, Liao Y L, Suslov S, et al.Ultrahigh dense and gradient Nano-precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Mater. Sci. Eng., 2014, 609A: 195
[14] Liao Y L, Ye C, Gao H, et al.Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments[J]. J. Appl. Phys., 2011, 110: 023518
[15] Ye C, Lin D, Liao Y L, et al.Effect of warm laser shock peening on the tensile strength and ductility of aluminum alloys [A]. ASME 2012 International Manufacturing Science and Engineering Conference[C]. Notre Dame, Indiana, USA: ASME, 2012: 533
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!