Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (11): 833-838    DOI: 10.11901/1005.3093.2016.736
Orginal Article Current Issue | Archive | Adv Search |
Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel
Luhai ZHOU1, Xicheng WEI1(), Chunyan WANG1, Jun LU2, Wurong WANG1
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
2 The FALAB Test Co., Ltd, Suzhou 215024, China.
Cite this article: 

Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel. Chinese Journal of Materials Research, 2017, 31(11): 833-838.

Download:  HTML  PDF(2791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The relationship between the dry sliding tribological performance of T10 steel disc against polyester pin in surface contact and the austenite grain size of the steel was investigated using a MM-W1 universal tester. The results show that the austenite grain size of T10 steel after five cycle-quenching is only 5 μm, which is much smaller than 32 μm of the one after one cycle-quenching. Grain refinement efficiently improves the strength and toughness of the steel,while slightly decreases its strain-hardening index. Although the grain refinement does not enhance the hardness of the steel but decrease the friction coefficient of friction couples of polyester/T10 steel, therewith the wear resistance of the steel increases remarkably. It is thought that the wear resistance improvement of T10 steel with fine grain and lower strain-hardening capability is benefited from the strong friction-induced hardening of the worn surface layer. The wear mechanism is mainly plough wear with accompanying slight contact fatigue wear.

Key words:  material failure and protection      tribological properties      T10 steel      grain size      strain hardening     
Received:  17 December 2016     
Fund: Supported by National Natural Science Foundation of China (Nos. 50975166 & 51475280)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.736     OR     https://www.cjmr.org/EN/Y2017/V31/I11/833

Sample Quenching parameter Tempering condition
1 780℃×15 min by 1 time, oil quenching 180℃×120 min
2 780℃×15 min by 3 times, oil quenching 180℃×120 min
3 780℃×15 min by 5 times, oil quenching 180℃×120 min
Table 1  Quenching and tempering parameters of T10 steel
Fig.1  OM images of austenite grain of studied steel quenched by 1 time (a), 3 times (b), and 5 times (c)
Quenching time Grain size/mm Hardness,
HV0.3
Impact toughness/J·cm-2 Yield strength/MPa Tensile strength/MPa Uniform elongation /% Strain hardening exponent, n
1 32 761 28.9 785 1220 8.7 0.225
3 12 758 33.2 847 1275 10.2 0.203
5 5 773 42.5 954 1353 9.1 0.193
Table 2  Grain size and mechanical properties of T10 steel
Fig.2  Friction coefficient as a function of test time (a)positive pressure 40 N,(b) positive pressure 70 N, (c) positive pressure 100 N, (d)?average friction coefficient
Fig.3  Wear loss of T10 steel samples with various grain sizes as a function of normal load
Fig.4  Surface hardness of samples with various grain sizes before and after test
Fig.5  Wear surface morphology of T10 steel samples with various grain sizes after tested under normal loads 70 N, (a), (b) 32 μm; (c), (d) 12 μm; (e), (f) 5μm
[1] Chi Y.Textile project report in National Science and Technology Conferencex[J]. China Textile & Apparel, 2006, (3): 90(池羽. 挑战前沿创造价值: 全国科学技术大会纺织获奖项目报道[J]. 中国纺织, 2006, (3): 90)
[2] Yao S J, Du L X, Liu X H, et al.Evolution of ultra-fine austenite grains in Nb and Nb-V-Ti microalloyed low carbon steel under cyclic heating-quenching treatment[J]. Trans. Mater. Heat Treatment, 2009, 30(5): 50(姚圣杰, 杜林秀, 刘相华等. 循环加热-淬火工艺下超细晶奥氏体的晶粒演变特征[J]. 材料热处理学报, 2009, 30(5): 50)
[3] Morito S, Huang X, Furuhara T, et al.The morphology and crystallography of lath martensite in alloy steels[J]. Acta Mater., 2006, 54: 5323
[4] Hui W J, Dong H, Wen Y Q, et al.Delayed fracture behavior of ultrafine grained high strength steel[J]. Acta Metall. Sin., 2004, 40: 561(惠卫军, 董瀚, 翁宇庆等. 超细晶粒高强度钢的延迟断裂行为[J]. 金属学报, 2004, 40: 561)
[5] Liu Y J, Li Y M, Tan Y H, et al.Apparent morphologies and nature of packet martensite in high carbon steels[J]. J. Iron Steel Res. Int., 2006, 13: 40
[6] Liu A M, Wang X H, Qin X P, et al.Study of improvement of performance of Cr12MoV in fine blanking mold with fast cyclic heat treatment[J]. New Technol. New Process, 2010, (12): 67(刘安民, 汪新衡, 秦小平等. 快速循环热处理提高Cr12MoV钢精冲模具性能的研究[J]. 新技术新工艺, 2010, (12): 67)
[7] Ba D M, Meng F J, Sun X F, et al.Friction and wear behaviors of nanocrystalline surface layer prepared on deposited layer[J]. Tribology, 2014, 34: 120(巴德玛, 孟凡军, 孙晓峰等. 堆焊熔敷层表面纳米晶层摩擦磨损性能研究[J]. 摩擦学学报, 2014, 34: 120)
[8] Bregliozzi G, Di Schino A, Kenny J M, et al.The influence of atmospheric humidity and grain size on the friction and wear of AISI 304 austenitic stainless steel[J]. Mater. Lett., 2003, 57: 4505
[9] Hao W X, Yang G C, Xie H, et al.Rapid solidification behavior and microstructure of highly undercooled Cu-Pb monotectic alloy melts[J]. Chin. J. Mater. Res., 2004, 18: 357(郝维新, 杨根仓, 谢辉等. 深过冷Cu-Pb偏晶合金的快速凝固行为和凝固组织[J]. 材料研究学报, 2004, 18: 357)
[10] Jain A, Basu B, Manoj Kumar B V. Grain size-wear rate relationship for titanium in liquid nitrogen environment[J]. Acta Mater., 2010, 58: 2313
[11] Wasekar N P, Haridoss P, Seshadri S K, et al.Sliding wear behavior of nanocrystalline nickel coatings: Influence of grain size[J]. Wear, 2012, 296: 536
[12] Panagopoulos C N, Georgarakis K G, Anagnostopoulou A.The influence of grain size on the sliding wear behaviour of zinc[J]. Mater. Lett., 2006, 60: 133
[13] Wei Y Q, Tian X B, Gong C Z, et al.Effect of pulsed bias voltage on the microstructures and properties of TiN/TiAlN multilayer coatings[J]. Chin. J. Mater. Res., 2011, 25: 630(魏永强, 田修波, 巩春志等. 脉冲偏压幅值对TiN/TiAlN多层薄膜微观结构和性能的影响[J]. 材料研究学报, 2011, 25: 630)
[14] Lv D Z, Chen Z K, Xiong X, et al.Microstructure and tribological property of C-TaC coatings on graphite prepared by chemical vapor deposition[J]. Chin. J. Mater. Res., 2016, 30: 690(吕东泽, 陈招科, 熊翔等. 化学气相沉积C-TaC涂层的结构及其摩擦性能[J]. 材料研究学报, 2016, 30: 690)
[15] Das D, Dutta A K, Ray K K.Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel[J]. Wear, 2009, 267: 1371
[16] Lu J, Wang C Y, Cai Y Q, et al.Effect of cyclic quenching-tempering process on impact toughness of 90CrMnTi steel[J]. Trans. Mater. Heat Treatment, 2014, 35(1): 71(鲁军, 王春燕, 蔡叶青等. 循环淬火-回火处理对90CrMnTi钢冲击韧性的影响[J]. 材料热处理学报, 2014, 35(1): 71)
[17] Xu L J, Wei S Z, Xing J D, et al.Effect of hardness and impact toughness on wear stability of high-vanadium high-speed steel[J]. Tribology, 2006, 26: 377(徐流杰, 魏世忠, 邢建东等. 硬度及冲击韧性对高钒高速钢磨损稳定性的影响[J]. 摩擦学学报, 2006, 26: 377)
[18] Song Y Q, Guan Z P, Ma P K, et al.Theoretical and experimental standardization of strain hardening index in tensile deformation[J]. Acta Metall. Sin., 2006, 42: 673(宋玉泉, 管志平, 马品奎等. 拉伸变形应变硬化指数的理论和实验规范[J]. 金属学报, 2006, 42: 673)
[19] Habig K H.Wear and Hardness of Materials [M]. Beijing: China Machine Press, 1987: 159(哈比希K H. 材料的磨损与硬度 [M]. 北京: 机械工业出版社, 1987: 159)
[1] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[3] NING Bo, LI Zhichao, WU Huibin, ZHANG Bingjun, HUANG Manli, DING Chao. Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel[J]. 材料研究学报, 2022, 36(9): 660-666.
[4] XUN Yu, YAN Wei, SHI Xianbo, ZHANG Chuanguo, SHAN Yiyin, YANG Ke, REN Yi. Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel[J]. 材料研究学报, 2022, 36(8): 561-570.
[5] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform[J]. 材料研究学报, 2022, 36(4): 250-260.
[6] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[7] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[9] SUN Jingli,ZHOU Haitao,CHEN Li,WU Hong,LIU Weili,YAO Fei,XU Yuling. Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel[J]. 材料研究学报, 2020, 34(3): 231-240.
[10] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[11] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Effect of Temperature on Tensile Properties of 6101 Al-alloy Wires[J]. 材料研究学报, 2020, 34(10): 730-736.
[12] Ying LI,Xiaolong CHEN,Chao SUN,Jun GONG. Preparation and Performance of LnMgAl11O19(Ln=La, Nd) Powders for Thermal Barrier Coating[J]. 材料研究学报, 2019, 33(6): 409-418.
[13] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[14] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[15] Muye NIU, Xinghua ZHANG, Haicheng ZHAO, Yu XIA, Jiajie LIU. Effect of Cr Addition on Tribological Properties of Ni3Si Alloys[J]. 材料研究学报, 2018, 32(5): 395-400.
No Suggested Reading articles found!