Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (10): 795-800    DOI: 10.11901/1005.3093.2015.667
ARTICLES Current Issue | Archive | Adv Search |
Erosion of Carbon Nanotube Arrays Induced by Atomic Oxygen Irradiation
Yuming LIU(),Man LI,Xiangpeng LIU
Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
Cite this article: 

Yuming LIU,Man LI,Xiangpeng LIU. Erosion of Carbon Nanotube Arrays Induced by Atomic Oxygen Irradiation. Chinese Journal of Materials Research, 2016, 30(10): 795-800.

Download:  HTML 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The atomic oxygen (AO) irradiation induced erosion of carbon nanotube (CNT) arrays has been investigated by ground-based atomic oxygen simulation facility. The heights and the surface morphologies of CNT arrays before and after AO irradiation have been characterized by scanning electron microscope (SEM). The results show that CNT arrays can be etched away in AO environment, but the erosion rate of CNT arrays varied with the radiation flux of AO. The morphologies of CNT arrays are also quite different from those before AO irradiation. The erosion of CNT arrays can be attributed to the bombardment effect and the oxidation effect of AO. Finally, a model for describing the process of AO erosion of CNT arrays is proposed.

Key words:  inorganic non-metallic materials      carbon nanotube arrays      atomic oxygen      erosion effect      erosion yield     
Received:  22 November 2015     
Fund: *Supported by Advance Research Foundation of the PLA General Armament Department.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.667     OR     https://www.cjmr.org/EN/Y2016/V30/I10/795

Fig.1  Schematic of CNT arrays irradiated by atomic oxygen
Fig.2  SEM images of as-grown CNT arrays (a) an overview image, (b) an enlarged image
Fig.3  SEM images of CNT arrays after AO irradiation with nominal fluence of 0.5×1020atom/cm2 (a) an overview image, (b) an enlarged image
Fig.4  SEM images of CNT arrays after AO irradiation with nominal fluence of 1.5×1020atom/cm2 (a) an overview image, (b) an enlarged image of (a), (c) an image of another zone
Fig.5  SEM images of CNT arrays after AO irradiation with nominal fluence of 5.0×1021atom/cm2 (a) an overview image, (b) and (c) enlarged images
Sample Height of CNT arrays (μm) Ey
(cm3/atom)
As-grown 400 -
After AO irradiation with fluence of 0.5×1020atom/cm2 360 8×10-23
After AO irradiation with fluence of 1.5×1020atom/cm2 140 17×10-23
After AO irradiation with fluence of 5×1020atom/cm2 100 6×10-23
Table 1  The erosion yield (Ey) of CNT arrays
Fig.6  Schematics of the erosion process of CNT arrays by AO irradiation
Fig.7  Funnel shaped morphology on the surface of CNT arrays during AO irradiation
1 O. Gohardani, M. C. Elola, C. Elizetxea, Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences, Progress in Aerospace Sciences, 70, 42(2014)
2 M. B. Jakubinek, B. Ashrafi, Y. Zhang, Y. M. Rubi, C. T. Kingston, A. Johnston, B. Simard, Single-walled carbon nanotube-epoxy composites for structural and conductive aerospace adhesives, Composites: Part B, 69, 87(2015)
3 DUO Shuwang, LI Meishuan, ZHANG Yaming, ZHOU Yanchun, Mass change and erosion mechanism of the polyimide ?lm during atomic oxygen exposure, Chinese Journal of Materials Research, 19(4), 337(2005)
3 (多树旺, 李美栓, 张亚明, 周延春, 原子氧环境中聚酰亚胺的质量变化和侵蚀机制, 材料研究学报, 19(4), 337(2005))
4 YANG Guang, HUANG Pengcheng, Atomic oxygen erosion resistance mechanism of a kind of UV-cured blended resins, Chinese Journal of Materials Research, 22(3), 251(2008)
4 (杨光, 黄鹏程, 一种光聚合共混树脂抗原子氧侵蚀的机理, 材料研究学报, 22(3), 251(2008))
5 S. B. Jin, G. S. Son, Y. H. Kim, C. G. Kim, Enhanced durability of silanized multi-walled carbon nanotube/epoxy nanocomposites under simulated low earth orbit space environment, Composites Science and Technology, 87, 224(2013)
6 D. Micheli, C. Apollo, R. Pastore, R. B. Morles, P. Coluzzi, M. Marchetti, Temperature, atomic oxygen and outgassing effects on dielectric parameters and electrical properties of nanostructured composite carbon-based materials, Acta Astronautica, 76, 127(2012)
7 W. Zhang, M. Yi, Z. G. Shen, X. H. Zhao, X. J. Zhang, S. L. Ma, Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance, Journal of Materials Science, 48, 2416(2013)
8 H. E. Misak, V. Sabelkin, S. Mall, P. E. Kladitis, Thermal fatigue and hypothermal atomic oxygen exposure behavior of carbon nanotube wire, Carbon, 57, 42(2013)
9 LIU Xiangpeng, TONG Jingyu, LI Jinhong, Study on the degradation of spacecraft film material due to AO interaction, Spacecraft Environment Engineering, 3(1), 39(2006)
9 (刘向鹏, 童靖宇, 李金洪, 航天器薄膜材料在原子氧环境中退化研究, 航天器环境工程, 3(1), 39(2006))
10 E. N. Voronina, L. S. Novikov, V. N. Chernik, N. P. Chirskaya, K. B. Vernigorov, G. G. Bondarenko, A. I. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth’s upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 3(2), 95(2012)
11 W. H. Wang, B. C. Huang, L. S. Wang, D. Q. Ye, Oxidative treatment of multi-wall carbon nanotubes with oxygen dielectric barrier discharge plasma, Surface and Coatings Technology, 205, 4896(2011)
12 Y. M. Liu, L. Liu, P. Liu, S. S. Fan, Plasma etching carbon nanotube arrays and the field emission properties, Diamond and Related Materials, 13, 1609(2004)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!