Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (10): 787-794    DOI: 10.11901/1005.3093.2016.143
ARTICLES Current Issue | Archive | Adv Search |
Hydroxyapatite Coatings on Titanium Substrate Prepared by Hydrothermal-Electrochemical Deposition
Jing DU1,Daihua HE1,**(),Ping LIU1,Xinkuan LIU1,Fengcang MA1,Wei LI1,Xiaohong CHEN1,Ke ZHANG1,Jun ZHAO2
1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050, China
Cite this article: 

Jing DU,Daihua HE,Ping LIU,Xinkuan LIU,Fengcang MA,Wei LI,Xiaohong CHEN,Ke ZHANG,Jun ZHAO. Hydroxyapatite Coatings on Titanium Substrate Prepared by Hydrothermal-Electrochemical Deposition. Chinese Journal of Materials Research, 2016, 30(10): 787-794.

Download:  HTML 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydroxyapatite coatings were deposited on the Ti6Al4V surface by hydrothermal-electrochemical deposition method in an electrolyte composited of 0.025 mol/L Ca2+, 0.015 mol/L H2PO4- and 0.1 mol/L NO3- with addition of 2.5×10-4 mol/L Na-Citrate . The effect of the citrate and deposition time on the composition, microstructure, crystallinity and thickness of coatings as well as the bonding strength between the coating and the substrate were investigated. The results show that: in comparison with the electrolyte without citrate, HA coating formed in the electrolyte with addition of citrate exhibits uniform and compact appearance with smaller gain size, which covers entirely the substrate, correspondingly the bonding strength between the coating and the substrate increases from 15.39 MPa to 24.31 MPa. The thickness of HA coating increases non-linearly with deposition time. With the increase of deposition time, the orientation index of the (002) plane of HA increases first and then decreases, which reaching a maximum for 2 h deposition while the coating has much smaller grain size; the crystallinity and bonding strength of HA coatings all increase first, and then decrease, which come to peak values, ca 75.7% and 24.3 MPa respectively by 2 h deposition.

Key words:  metallic materials      Ti6Al4V      citrate      hydrothermal electrochemical      hydroxyapatite coating     
Received:  17 March 2016     
Fund: *Supported by the Key Laboratory of Inorginic Coating Materials, Chinese Academy of Sciences No. KLICM-2014-11, and the Shanghai Municipal Natural Science Foundation Sponsored by Shanghai Municipal Science and Technology Commissions No. 15ZR1428300.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.143     OR     https://www.cjmr.org/EN/Y2016/V30/I10/787

Fig.1  XRD patterns of HA coating deposited in different electrolytes (a) with citrate, (b) no citrate
Fig.2  FTIR patterns of HA coating deposited in different electrolytes (a) with citrate, (b) no citrate
Fig.3  SEM micrographs of HA coating deposited in different electrolytes: (a) and (c) with citrate, (b) and (d) no citrate
Fig.4  Cross-section SEM micrographs of HA coating deposited in different electrolytes: (a) with citrate, (b) no citrate
Fig.5  XRD patterns of HA coating after hydrothermal electrochemical deposition at different time (a) 1 h, (b) 1.5 h, (c) 2 h, (d) 2.5 h
Fig.6  Degree of crystallinity of HA coating after hydrothermal electrochemical deposition at different time
Fig.7  SEM micrographs of HA coating after hydrothermal electrochemical deposition at different time (a) 1 h, (b)1.5 h, (c) 2 h, (d) 2.5 h
Fig.8  Thickness of HA coating after hydrothermal electrochemical deposition at different time
Fig.9  Bonding strength of HA coating after hydrothermal electrochemical deposition at different time
1 M. Long, H. J. Rack, Titanium alloys in total joint replacement-a materials science perspective, Biomaterials, 19(18), 1621(1998)
2 M. J. Glimcher, Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation, Rev. Mineral. Geochem., 64, 223(2006)
3 L. Geros, R. Zapanta, Properties of osteoconductive biomaterials: calcium phosphates, Clin. Orthop. Relat. Res., 395, 81(2002)
4 ZHANG Xiaowei, LIU Hongxi, JIANG Yehua, WANG Chuanqi, ZENG Weihua, Research progress of functional composite coatings on Ti6Al4V alloy surface prepared by laser cladding technique, Rare. Metal. Mat. Eng., 41(1), 178(2012)
4 (张晓伟, 刘洪喜, 蒋业华, 王传琦, 曾维华, Ti6Al4V合金表面激光熔覆功能复合涂层研究进展, 稀有金属材料与工程, 41(1), 178(2012))
5 SUN Yaoning, YIN Yakang, XU Guoqiang, Preparation and cell compatibility of titanium and hydroxyapatite composite coatings, Nonferrous. Met. Eng., 5(3), 27(2015)
5 (孙耀宁, 殷亚康, 徐国强, 钛与羟基磷灰石复合涂层的制备及其细胞相容性, 有色金属工程, 5(3), 27(2015))
6 HUANG Liping, XIE Youtao, JI Heng, ZHAO Jun, ZHENG Xuebin, Vacuum plasma spray hydroxyapatite/tantalum composite coatings, Therm. Spray. Technol., 5(2), 10(2013)
6 (黄利平, 谢有桃, 季珩, 赵君, 郑学斌, 真空等离子喷涂HA/Ta复合涂层, 热喷涂技术, 5(2), 10(2013))
7 K. Yousefi, S. M. Zebarjad, J. V. Khaki, Comparison of polyethylene glycol effect on hydroxyapatite morphology produced into different methods: sol-gel and precipitation, J. Sol-Gel Sci. Technol., 76(3), 592(2015)
8 D. H. He, P. Wang, P. Liu, X. K. Liu, F. C. Ma, J. Zhao, HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy, Surf. Coat. Technol., 277, 203(2015)
9 RONG Hui, MA Fengcang, LIU Ping, LI Wei, LIU Xinkuan, CHEN Xiaohong, HE Daihua, Effects of micro-arc oxidation process on thickness and surface morphology of oxide film on the surface of Ti-6Al-4V titanium alloy, Heat. Treat. Mat., 39(12), 23(2014)
9 (荣晖, 马凤仓, 刘平, 李伟, 刘新宽, 陈小红, 何代华, 微弧氧化工艺对Ti-6Al-4V钛合金表面氧化膜厚度及表面形态的影响, 金属热处理, 39(12), 23(2014))
10 P. Choudhury, D. C. Agrawal, Sol-gel derived hydroxyapatite coatings on titanium substrates, Surf. Coat. Technol., 206, 360(2011)
11 Y. Huang, S. G. Han, X. F. Pang, Q. Q. Ding, Y. J. Yan, Electro deposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications, Appl. Surf. Sci., 271(6), 299(2013)
12 D. T. M. Thanh, T. N. Pham, T. P. Nguyen, Le Xuan Que, V. A .Nguyen, H. Thai, D. L. Tran, Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel, Mater. Sci. Eng. C, 33(4), 2037(2013)
13 Y. C. Qi, J. Shen, Q. Y. Jiang, B. Jin, J. W. Chen, X. Zhang, The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method, Adv. Powder Technol., 26(4), 1041(2015)
14 K. Savino, M. Z. Yates, Thermal stability of electrochemical-hydrothermal hydroxyapatite coatings, Ceram. Int., 41(7), 8568(2015)
15 J. D. Du, X. K. Liu, D. H. He, P. Liu, F. C. Ma, Q. Li, N. N. Feng, Influence of alkali treatment on Ti6Al4V alloy and the HA coating deposited by hydrothermal-electrochemical methods, Rare Metal Mat. Eng., 43(4), 0830(2014)
16 S. H. Rhee, J. Tanaka, Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid, Biomaterials, 20, 2155(1999)
17 MA Yijuan, HAO Lijing, DU Shaolong, ZHAO Naru, Synthesis of hydroxyapatite microspheres by hydro-thermal method under the control of sodium citrate, J. Inorg. Mater., 29(03), 284(2014)
17 (马艺娟, 郝丽静, 杜绍龙, 赵娜如, 柠檬酸钠调控水热合成羟基磷灰石微球, 无机材料学报, 29(03), 284(2014))
18 D. Y. Lin, X. X. Wang, Y. Jiang, Effect of trisodium citrate on electrolytic deposition of hydroxyapatite coatings, J. Biomed. Mater. Res. B., 96(1), 1(2011)
19 XIAO Xiufeng, Study on the process, structural and properties of hydrothermal electrode position hydroxyapatite coatings, PhD thesis, Yanshan University(2005)
19 (肖秀峰, 水热电化学沉积羟基磷灰石涂层的工艺、结构和性能研究, 博士学位论文, 燕山大学(2005))
20 D. H. He, P. Liu, X. K. Liu, X. H. Cheng, F. C. Ma, W. Li, Hydroxyapatite bioceramic coatings prepared by hydrothermal-electrochemical deposition method, J. Wuhan Univ. Technol., 29(2), 398(2014)
21 MA Fengcang, XU Min, LIU Ping, LI Wei, LIU Xinkuan, HE Daihua, LU Xiaoqin, Influence of pH value and slow granule on HA/TiO2 coatings deposited by hydrothermal-electrochemical method, J. Funct. Mater., (7), 7094(2014)
21 (马凤仓, 徐敏, 刘平, 刘新宽, 何代华, 陆晓琴, pH值和缓冲剂对水热电化学沉积HA/TiO2涂层的影响, 功能材料, (7), 7094(2014))
22 L. C. Zhao, C. X. Cui, X. Wang, S. J. Liu, S. J. Bu, Q. Z. Wang, Y. M. Qi, Corrosion resistance and calcium-phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications, Appl. Surf. Sci., 330(11), 431(2015)
23 WANG Yingjun, NING Chengyun, ZHAO Zizong, CHEN Kai, LIU Zhengyi, Phase transition and structural stability of hydroxyapatite bioactive gradient coating, J. Chin. Ceram. Soc., 26(5), 655(1998)
23 (王迎军, 宁成云, 赵子衷, 陈楷, 刘正义, 生物活性梯度涂层中轻基磷灰石的相变与结构稳定性, 硅酸盐学报, 26(5), 655(1998))
24 C. Huang, J. Wang, D. C. Che, Study of the crystal structures of the fluoridated apatite coatings electrodeposited on titanium, Rare Metal Mater. Eng., 40(4), 233(2011)
25 HUANG Yong, YAN Yajing, LI Gun, HE Congjun, RAO Nini, PANG Xiaofeng, Effect of citrate on electrolytic deposition of hydroxyapatite/zirconia double layers coating, Chinese J. Inorg. Chem., 28(6), 1105(2012)
25 (黄勇, 严雅静, 李滚, 何从军, 饶妮妮, 庞小峰, 柠檬酸钠对电沉积羟基磷灰石/氧化锆过渡涂层的影响, 无机化学学报, 28(6), 1105(2012))
26 M. R .T Filgueirasa, D. Mkhonto, N. H. Leeuw, Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces, J. Cryst. Growth, 294(294), 60(2006)
27 N. H. Leeuw, J. A. L.Rabone, Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and (0110) surfaces in all aqueous environment, Cryst. Eng. Comm, 9(12), 1178(2007)
28 W. Jiang, H. H. Pan, Y. R. Cai, J. H. Tao, P. Liu, X. R. Xu, R. K. Tang, Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level, Langmuir., 24(21), 12446(2008)
29 ZHANG Yong, Studying on the hydrothermal preparation and growth mechanism of needles of hydroxyapatite whiskers, Master Thesis, Wuhan University of Technology(2002)
29 (张勇, 羟基磷灰石晶须的水热法制备及其针状生长机理研究, 硕士学位论文, 武汉理工大学(2002))
30 XIANG Daoping, DING Lei, Research progress of alloying elements or oxides strengthened W-Ni-Fe heavy alloys, Chin. J. Nonferrous Met., 23(06), 1549(2013)
30 (向道平, 丁雷, 合金元素或氧化物强化W-Ni-Fe高密度合金的研究进展, 中国有色金属学报, 23(06), 1549(2013))
31 CAI Jianping, LI Bo, Bonding strength of plasma sprayed hydroxyapatite coating, J. Mater. Prot., 33(9), 35(2000)
31 (蔡建平, 李波, 等离子喷涂羟基磷灰石涂层的结合强度, 材料保护, 33(9), 35(2000))
32 N. Rameshbabu, T. S. S. Kumar, K. P. Rao, Influence of microwave power, irradiation time and polymeric additions on synthesis of nanocrystalline hydroxyapatite, Mater. Res. Innovations, 14(1), 45(2010)
33 WEI Jie, LI Yubao, ZUO Yi, YANG Aiping, A comparison study on nano- apatite crystals prepared by hydrothermally synthesized method, High Tech. Lett., 13(9), 76(2003)
33 (魏杰, 李玉宝, 左奕, 杨爱萍, 水热法合成制备纳米磷灰石晶体比较研究, 高技术通讯, 13(9), 76(2003))
34 JIAO Mingjie, Depositing magnesium/strontium-doped hydroxyapatite coating on titanium surface by electrochemical methods, Master thesis, Zhejiang University(2011)
34 (焦明洁, 电化学方法在金属钛表面沉积掺镁/掺锶羟基磷灰石涂层, 硕士学位论文, 浙江大学(2011))
35 ZHANG Zhaoxian, CAI Tianxiao, Titanium Electrodes Reaction Engineering (Beijing, Metallurgical Industry Press, 2009)
35 (张招贤, 蔡天晓, 钛电极反应工程学(北京, 冶金工业出版社, 2009))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!