Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (5): 348-354    DOI: 10.11901/1005.3093.2015.558
研究论文 Current Issue | Archive | Adv Search |
Effect of Different Calcium Resouces on Reaction Mechanism of Geopolymer
GUO Xiaolu1,2,**(), SHI Huisheng1,2, XIA Ming2
1. Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China
2. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Cite this article: 

GUO Xiaolu, SHI Huisheng, XIA Ming. Effect of Different Calcium Resouces on Reaction Mechanism of Geopolymer. Chinese Journal of Materials Research, 2016, 30(5): 348-354.

Download:  HTML  PDF(3072KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The reaction products of a system of geopolymer could be great different due to the variation of the chemical composition of raw materials and the activated conditions. In the system of geopolymer containing calcium, the reaction mechanism, composition of products, and their structures could be more complex. Metakaolin (MK)-based geopolymer was prepared from metakaolin with different amount of five kinds of crystal calcium resources and two kinds of non-crystal calcium sources. The effect of calcium resource on the performance and reaction mechanism of the geopolymer was then systematically studied. The result showed that the dissolution of Si and Al related to the structure of the calcium resources and had a strong positive correlation, but no clear relationship with Ca. The compressive strength of MK-based geopolymer could decrease by addition of calcium resources. The compressive strength of geopolymer with non-crystal calcium resource was higher than that with crystal one. The dessolved amount of calcium from the calcium resource had a negative connection with the compressive strength. It provided the theoretical and experimental base for broadening the raw material resources of geopolymer system, and for utilization of industrial solid wastes containing calcium.

Key words:  Inorganic non-metallic materials      geopolymer      calcium      metakaolin      fly ash      slag     
Received:  30 September 2015     
ZTFLH:  TQ172  
Fund: *Supported by National Natural Science Foundation of China No.51478328
About author:  **To whom correspondence should be addressed, Tel: (021)69582144, E-mail: guoxiaolu@tongji.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.558     OR     https://www.cjmr.org/EN/Y2016/V30/I5/348

Composition Na2O MgO Al2O3 SiO2 K2O CaO Fe2O3 Others
Metakaolin(MK) 0.23 0.03 43.80 53.00 0.19 0.02 0.43 2.22
High-calcium fly ash (CFA) 1.28 1.85 22.00 50.30 3.42 11.30 7.10 2.74
Slag powder(SL) - 8.58 14.95 33.26 - 40.65 1.07 1.49
Table 1  Chemical composition of MK, CFA and SL (%, mass fraction)
Minerals Crystalline state Structure Ideal chemical composition Density/gcm-3 Mohs hardness
Wollastonite(WOL) crystal single stranded CaSiO3 2.9 5
Actinolite (ACT) crystal double strands Ca2(Mg,Fe)5Si8O22(OH)2 3.2 5.7
Vesuvianite (VES) crystal island structure Ca19Al11Mg2Si18O69(OH)9 3.4 6.5
Anorthite (ANO) crystal frame shaped structure CaAl2Si2O8 2.7 6.3
Prehnite (PRE) crystal layered Ca2Al2Si3O10(OH)2 2.9 6.3
Table 2  Basic properties of silicate minerals containing calcium
Minerals CaO SiO2 Al2O3 Fe2O3 MgO NaO K2O
Wollastonite (WOL) 48.7 48.4 0.02 0.13 0.32 0.01 0.20
Actinolite (ACT) 28.1 36.1 0.60 2.37 14.23 0.05 0.03
Vesuvianite (VES) 36.9 37.1 18.0 1.88 2.46 0.02 0.04
Anorthite (ANO) 24.5 35.7 22.0 0.61 0.45 0.03 0.07
Prehnite (PRE) 27.4 42.5 20.8 3.73 - 0.01 0.09
Table 3  Chemical composition of silicate minerals containing calcium (%, mass fraction)
Minerals Ca Si Al
Metakaolin (MK) 3.42 3159.00 3650.00
High-calcium fly ash (CFA) 8.12 1247.27 622.01
Slag powder (SL) 6.81 1012.59 511.77
Wollastonite (WOL) 164.25 727.86 3.13
Actinolite (ACT) 64.05 729.33 4.59
Vesuvianite (VES) 38.63 806.00 40.85
Anorthite (ANO) 11.66 1837.33 353.27
Prehnite (PRE) 40.79 1953.75 496.81
Table 4  Concentration of Ca, Si and Al from calcium resources in NaOH for 24 h (mg/L)
Correlation r of Pearson Si-dissolution Al-dissolution
Si-dissolution 1 0.976
Al-dissolution 0.976 1
Table 5  Correlation analysis between dissolution of Si and Al from three calcium resources of silicate minerals with frame structure
Correlation r of Pearson Ca-dissolution Si-dissolution Al-dissolution
Ca-dissolution 1 -0.472 -0.690
Si-dissolution -0.472 1 0.645
Al-dissolution -0.690 0.645 1
Table 6  Correlation analysis of dissolution of Ca, Si and Al from external calcium resources
Fig.1  Effects of external calcium on the compressive strength of MK-based geopolymer. (a) 20% (mass fraction) external calcium, (b) 40% (mass fraction) external calcium
Correlation r
of Pearson
Compressive strength of 7 d Compressive strength of 28 d
20% (mass fraction) 40% (mass fraction) 20% (mass fraction) 40% (mass fraction)
Ca-dissolution -0.637 -0.739 -0.907 -0.898
Table 7  Correlation analysis of the compressive strength and Ca dissolution from the external calcium dissolving for 24 h
Fig.2  XRD spectra of geopolymer samples with calcium resources at 28 d. (a) 20% (mass fraction) external calcium, (b) 40% (mass fraction) external calcium
Fig.3  Effects of calcium on the mechanism of geopolymer reaction
1 C. K. Yip, J. S. J.Van Deventer, Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder, J. Mater. Sci., 38(18), 3851(2003)
2 C. K. Yip, G. C. Lukey, J. S. J.Dean, Effect of blast furnace slag addition on microstructure and properties of metakaolinite geopolymeric materials, Ceram. Trans., 153, 187(2004)
3 T. W. Cheng, J. P. Chiu, Fire-resistant geopolymer produced by granulated blast furnace slag, Minerals Engineering, 16(3), 205(2003)
4 S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, M. Gordillo, J. L. Provis, Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends, J. Mater. Sci., 46(16), 5477(2011)
5 S. A. Bernal, J. L. Provis, V. Rose, R.M. de Gutiérrez, High-resolution X-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders, J. Am. Ceram. Soc, 96(6), 1951(2013)
6 S. Alonso, A. Palomo, Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio, Mater. Lett., 47(1), 55(2001)
7 S. Alonso, A. Palomo, Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures, Cem. Concr. Res., 31(1), 25(2001)
8 M. L. Granizo, S. Alonso, M.T. Blanco-Varela, A. Palomo, Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction, J. Am. Ceram. Soc., 85(1), 225(2002)
9 C. K. Yip, J. L. Provis, G. C. Lukey, J. S. J.Van Deventer, Carbonate mineral addition to metakaolin-based geopolymers, Cem. Concr. Com., 30(10), 979(2008)
10 C. K.Yip, G. C. Lukey, J. S. J.Van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res., 35(9), 1688(2005)
11 C. K. Yip, G. C. Lukey, J. L. Provis, J. S. J.Van Deventer, Effect of calcium silicate sources on geopolymerisation, Cem. Concr. Res., 38(4), 554(2008)
12 J. L. Provis, J. S. J.Van Deventer, Geopolymerisation kinetics. 2. Reaction kinetic modeling, Chemical Engineering Science, 62(9), 2318(2007)
13 J. S. J.Van Deventer, J. L. Provis, P. Duxson, G. C. Lukey, Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater., 139(3), 506(2007)
14 H. Xu, J. S. J.Van Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, 59(3), 247(2000)
15 H. Xu, J. S.J. van Deventer, Effect of source materials on geopolymerization, Industrial and Engineering Chemistry Research, 42(8), 1698(2003)
16 E. H. Oelkers, J. Schott, J. L. Devidal, The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions, Geochim. Cosmochim. Acta., 58(9), 2011(1994)
17 S. V. Golubev, O. S. Pokrovsky, J. Schott, Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 oC, Chem. Geolo., 217(3), 227(2005)
18 P. Duxson, J. L. Provis, Designing precursors for geopolymer cements, J. Am. Ceram. Soc, 91(12), 3864(2008)
19 Y. Xiao, A. C. Lasaga,Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H3O+) catalysis, Geochim. Cosmochim. Acta., 58(24), 5379(1994)
20 A. Allahverdi, M. Mahinroosta, Mechanical activation of chemically activated high phosphorous slag content cement, J. Powder Technol., 245, 182(2013)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!