Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (5): 343-347    DOI: 10.11901/1005.3093.2015.131
研究论文 Current Issue | Archive | Adv Search |
Effect of Hole Diameter on Tensile Behavior of a Ni-base Single Crystal Superalloy DD33
ZHOU Zhongjiao, LIU Tao, ZHANG Gong, WANG Li**(), LOU Langhong
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHOU Zhongjiao, LIU Tao, ZHANG Gong, WANG Li, LOU Langhong. Effect of Hole Diameter on Tensile Behavior of a Ni-base Single Crystal Superalloy DD33. Chinese Journal of Materials Research, 2016, 30(5): 343-347.

Download:  HTML  PDF(778KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plate tensile specimens were machined from a Ni-base single crystal (SC) superalloy DD33, holes with various diameters were electrochemically machined (ECM) in the middle of the specimens. The strain fields around the holes during room temperature tensile tests were in-situ observed by an ARAMIS - optical deformation analysis system based on the digital image correlation (DIC) technique and the fracture surface was observed by scanning electron microscope (SEM). It was demonstrated that the yield strength and ultimate tensile strength decreased with the increase of hole diameter from 0.5 mm to 0.9 mm. Strain concentrated in the vicinity of the hole. The maximum strain increased slightly during elastic deformation. However, once plastic deformation began, it increased rapidly above its elastic value. In addition, the maximum strain and strain gradients adjacent to the holes increased with the increase of the hole diameter from 0.5 mm to 0.9 mm. This work is critical for understanding the crack initiation around the cooling holes with different diameters in the SC blade.

Key words:  metallic materials      microstructure      defects and properties for materials      tensile behavior      ARAMIS systems      Ni-base single crystal superalloy      hole diameter      strain distribution     
Received:  17 March 2015     
ZTFLH:  TG115.5+2  
Fund: *Supported by National Natural Science Foundation of China No.51201164 and National High Technology Research and Development Program of China No.2012AA03A511
About author:  **To whom correspondence should be addressed, Tel: (024)23971276, E-mail: wangli@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.131     OR     https://www.cjmr.org/EN/Y2016/V30/I5/343

Fig.1  Schematic of the thin-wall specimen for tensile test (a) and the black-white stochastic pattern for ARAMIS observation (b)
Fig.2  The comparison of stress-strain curves (a), yield strength (YS) and ultimate tensile strength (UTS) (b) of specimens with a hole of different diameters
Fig.3  Strain distribution around holes of different diameters during tensile test obtained from the in-situ observation by ARAMIS system, (a)-(d) Φ=0.5 mm, (e)-(h) Φ=0.7 mm, (i)-(l) Φ=0.9 mm, (a)(e)(i) show the morphology of the holes, and the strain distribution during tensile test of initial stage without deformation (b) (f) (j), then loaded to YS (c) (g) (k), and UTS (d) (h) (l)
Fig.4  The strain distribution from the edge of the hole when the samples were loaded to UTS
Fig.5  The evolution of strain at x=R during tensile test
Fig.6  SEM micrographs showing the fracture surfaces of tensile specimens with a hole of (a) Φ=0.5 mm, (b) Φ=0.7 mm, (c) Φ=0.9 mm
Fig.7  The stress in the vicinity of the hole
1 CHEN Rongzhang, Review and prospect of developments of cast superalloys and technology of aeroengine turbine blade, Aeronaut. Manuf. Technol., 2, 19(2002)
(陈荣章, 航空铸造涡轮叶片合金和工艺发展的回顾与展望, 航空制造技术, 2, 19(2002))
2 E. Sun, T. Heffernan, R. Helmink, Stress rupture and fatigue in thin wall single crystal superalloys with cooling holes, Superalloys 2012, 351(2012)
3 A. Sugianto, R. J. Wardhana, N. Yulian, I. G. Kusuma, J. Wardana, M. Karokaro, H. Purwaningsih, Failure analysis of a first stage high pressure turbine blade in an aero engine turbine on PK-GSG Boeing B747-400
4 Z. Mazur, A. Luna-Ramírez, J. A.Juárez-Islas, A. Campos-Amezcua, Failure analysis of a gas turbine blade made of Inconel 738LC alloy, Eng. Fail. Anal., 12, 474(2005)
5 E. Z. Stowell, Stress and Strain Concentration at a Circular Hole in an Infinite Plate, National Advisory Committee for Aeronautics, Technical Note 2073, Washington, 1950
6 L. H. Burck, C. A. Rau, Fatigue crack propagation from small holes in linear arrays, Int. J. Fract., 9(1), 43(1973)
7 N. X. Hou, Z. X. Wen, Z. X. Du, Z. F. Yue, Crystallographic failure analysis of film near cooling hole under temperature gradient of nickel-based single crystal superalloys, Theor. Appl. Fract. Mech., 47, 164(2007)
8 Q. M. Yu, Z. F. Yue, Z. X. Wen, Creep damage evolution in a modeling specimen of nickel-based single crystal superalloys air-cooled blades, Mater. Sci. Eng. A, 477, 319(2008)
9 F. Ellyin, Experimental study of oblique circular cylindrical apertures in plates, Exp. Mech., 10(5), 195(1970)
10 F. Ellyin, Elastoplastic strain distribution around an oblique aperture in plates, Exp. Mech., 13(7), 305(1973)
11 F. Toussaint, L. Tabourot, P. Vacher,Experimental study with a Digital Image Correlation (DIC) method and numerical simulation of an anisotropic elastic-plastic commercially pure titanium, Arch. Civ. Mech. Eng., 8(3), 131(2008)
12 S. H. Tung, M. H. Shih, J. C. Kuo, Application of digital image correlation for anisotropic plastic deformation during tension testing, Opt. Laser. Eng., 48, 636(2010)
13 L. K. William, Stress concentration around a small circular hole in the HIMAT composite plate, NASA technical memorandum 86038, 1985
14 J. M. Whitney, R. J. Nuismer, Stress fracture criteria for laminated composite containing stress concentration. J. Comp. Mater., 8, 253(1974)
15 LI Jiarong, SHI Zhenxue, YUAN Hailong, LIU Shizhong, ZHAO Jinqian, HAN Mei, LIU Weiwei, Tensile anisotropy of single crystal superalloy DD6, J. Mater. Eng., 12, 6(2008)
(李嘉荣, 史振学, 袁海龙, 刘世忠, 赵金乾, 韩梅, 刘维维, 单晶高温合金DD6拉伸性能各向异性, 材料工程, 12, 6(2008))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!